§7. Ditplyson Molets.
 genecrte mare semples form (appramextey).
\$7.1. Lanerse and sare-matchury.
Suppore $P(x) \propto \exp (-V(x)) \quad V: \mathbb{R}^{d} \rightarrow \mathbb{R}$
Lempeinn diffuston. $d X_{t}=-\nabla U\left(X_{t}\right) d t+\sqrt{2} d B_{t}$
e.g.

$G$ mave twarald la rono rambon moise the modes prevarity $X_{t} \rightarrow$ (hocal) max.

Thum If $\rho$ is $\log$ ancare. (ie., $U$ is anvex) then $\operatorname{Len}\left(X_{i}\right) \rightarrow \rho$
Quection. Htaw to cotimate the sore furtion. $\nabla \log \rho(x)=-\nabla U(x)$ ?

Let $s(:=\theta): \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ be ow score eAlimetor. (ley some dep network). 4 parameter.
Goal: $\operatorname{minimize}_{\theta} J(\theta):=\underset{x \wedge \rho}{\mathbb{E}}\|S(x ; \theta)-\underbrace{(-\nabla U(x))}_{G_{\text {we }} \text { don }}\|_{2}^{2}$.
we cont have access to this.
Lemma. Assume sone bow day coactions. We have

$$
J(\theta)=\frac{1}{2} \underset{x-p}{\mathbb{F}}\|s(x ; \theta)\|^{2}+\frac{\mathbb{F}}{x_{\sim} p} \nabla \cdot \delta(x ; \theta)+C
$$

Pf. We conte.

$$
\int_{\text {can he estimated }{ }^{2} \text { using }\left\{x_{i}\right\}_{i=1}^{n} \quad \downarrow}^{\downarrow} \text { dorset depend ox } \theta \text {. }
$$

$P_{2}$ the third term, we compute.

$$
\begin{aligned}
\frac{\mathbb{E}}{\rho}\langle s(x ; \theta), \nabla U(x)\rangle & =\sum_{k=1}^{d} \int \rho_{k}(x ; \theta) \partial_{k} U(x) \rho(x) d x \\
& =-\sum_{k=1}^{d} \int S_{k}(x ; \theta) \partial_{k} \log \rho(x) \rho(x) d x \\
& =-\sum_{k=1}^{d} \int S_{k}(x ; \theta) \partial_{k} \rho(x) d x \\
& =-\sum_{k=1}^{d}\left(\left.S_{k}(x ; \theta) \rho(\theta)\right|_{\|x\|} \rightarrow \infty-\int \partial_{k} S_{k}(x ; \theta) \rho(x) d x\right)
\end{aligned}
$$

the boundary carchition wo need

$$
=\int \sum_{k=1}^{d} \partial_{k} S_{k}(x ; \theta) \rho(x) d x=\underset{x \sim \rho}{\mathbb{\#}} \nabla \cdot S(x ; \theta) .
$$

\&7.2 Diffuston models.


Pormad


Revarse.
Forwand process. $\quad d X_{t}=-X_{t} d t+\sqrt{2} d B_{A} . \quad X_{0} \sim \rho$.
Reverse process $X_{t}^{\epsilon}:=X_{T-t}$.
we have $d x_{t}^{\leftarrow}=\left(x_{t}^{\leftarrow}+2 \nabla \log q_{T-t}\left(x_{t}^{*}\right)\right) d t+\sqrt{2} d B_{t} . \quad x_{0}^{\leftarrow} \sim q_{T}$.
$\rightarrow$ score $t$. can be leanned in the fownal process.
Fauts. 1) $\quad \operatorname{Law}\left(X_{t}\right) \rightarrow \gamma^{d}$ (d-dam std. Garwsikn).
2) $\operatorname{Law}\left(X_{+}^{\leftarrow}\right)=q_{T-t}$.

PAscretized reverse process, (Atsep sie $h>0$, scone cofimator $\rho_{t} \approx \nabla \log q$ ).

$$
d X_{t}^{\leftarrow}=\left(X_{t}^{\leftarrow}+2 S_{T-k n}\left(X_{T-k n}^{\leftarrow}\right)\right) d t+\sqrt{2} d B_{t}, \quad+6[k h,(k+1) h]
$$

$x_{0}^{\leftarrow} \sim \gamma^{d}<$ not of alue we con't sample from of
(No need to replate all $X_{t}^{\in}$ with $X_{k n}^{*}$. The abwe (1-step) lueer SPE can be solned in dhed form.)

$$
P_{t}:=\operatorname{Law}\left(X_{t}^{*}\right) .
$$

Goal: $P_{T} \approx q_{0}=\rho$

* No bog-canty

Ascumptitas a) a) $\forall t \geqslant 0$ supp $q_{t}=\mathbb{R}^{d}, \quad \nabla \log q_{t}$ is $L-\alpha_{\text {ipschitz }}$ conctitions or
b). For some $\eta>0$, $\mathbb{E}_{\rho}\|x\|^{2+\eta}<\infty$. Defore $m_{2}^{2}:=\mathbb{E}_{\rho}\|x\|^{2}$ ing perimetric requalaties.
c). $\forall k \in[N] \quad \mathbb{E}\left\|S_{\text {sph }}-\nabla \log q_{\text {pan }}\right\|^{2} \leqslant \varepsilon_{\text {sare }}^{2}$.

Erior sources: 1) $X_{0} \in \sim \gamma^{d}$ tiesteal of $q_{T} /$ frimed proess not converging
2) Ustry the time-discretized SDE.

Dksandel.
3) non-exact scove estimator $S$.

Thm. 2 of (chen ot d, 2023). Under the preciors assumptions. choose $h=T / N \leq \min \{1 / L, 1\}$.

$$
\Rightarrow T V\left(P_{T}, \rho\right) \leq \sqrt{K L\left(\rho \| \gamma^{d}\right)} \exp (-T)+\left(2 \sqrt{a h}+L m_{2} h\right) \sqrt{T}+\varepsilon_{\text {coove }} \sqrt{T}
$$

error D
2)


$$
\begin{aligned}
& T V\left(\tilde{P}_{T}, \rho\right) \leqslant T V\left(\gamma^{d}, q_{T}\right) \leqslant \sqrt{K L\left(q_{T} \| \gamma^{d}\right)} \leq \exp (-T) \sqrt{K L\left(\rho \| \gamma^{d}\right)} \\
& \text { Pata provesity serequatity } \\
& \text { abon the cuese process } \\
& \text { Punster's inequality exp. convergence of } \\
& \text { the fowerd process. }
\end{aligned}
$$

To harable erooss 2) and 3). we reed Girseun's therem.
Thm 1 (Girsanv_ coblesion). Corstler $\quad d X_{t}=b\left(X_{t}\right) d t+\sigma\left(X_{t}\right) d B_{t} \quad \quad t \leq T$. and $\quad d K_{t}=[b(K)+\gamma(t, c)] d t+6\left(K_{k}\right) d B_{H}, \quad t \leqslant T$.
Assume some regulanty conedtions (and Noviboi's condation). Defore.

$$
\begin{aligned}
& u(t, w)=\gamma(t, w) / \sigma\left(Y_{+}\right) \longrightarrow \text { nomclized eror } \\
& M_{+}(\omega)=\exp \left(-\int_{0}^{+} u(s, w) d B_{s}-\frac{1}{2} \int_{0}^{+} u^{2}(s, w) d s\right) .
\end{aligned}
$$

Then, we have $\operatorname{taw}\left(Y_{t}\right) / \operatorname{Lam}\left(X_{+}\right)=M_{+}$The statement here is wrong. TODO: fix this

Coollay. Pat $P=\operatorname{Lan}\left(Y_{T}\right), Q=\operatorname{Law}\left(Y_{T}\right)$, Then we have $刀 0 \quad L^{2}$ enw of the dirt term.

$$
K L(P \| Q)=\mathbb{F}_{P} \log \frac{P}{Q}=-\frac{\mathbb{F}}{p} \log M_{t}=\frac{\mathbb{E}}{P} \int_{0}^{T} \mu(s, \omega) d B_{s}+\frac{1}{2} \frac{\mathbb{F}_{p}}{p} \int_{0}^{T} u^{2}(S, \omega) d s .
$$

Remark. Nowlau's condetion dosen't hold in owr settion, and we cotelly need sunc himitry aryument.
Remark; For DDES. smoll $D$ enor $\Rightarrow \Rightarrow$ small wost case enor e. $\Longrightarrow \longrightarrow_{0}^{\pi}$ adverey.

For SDES. we durt have "wort case"!

 at of, respectiony.
Goorl: Boand $T V\left(P_{T}^{q}, Q_{T}^{*}\right)$.

$$
\text { Gored: Boind } T V\left(P_{T}^{n}, Q_{T}^{-}\right) \text {. } K L\left(Q_{T}^{ \pm} \| P_{T}^{q}\right) \leqslant \sum_{p=0}^{N-1} \frac{\mathbb{F}}{Q_{T}} \int_{p h}^{a t t h}\left\|S_{T-k a}\left(X_{k a}\right)-\nabla \log q_{T-t}\left(X_{T}\right)\right\|^{2} d t
$$

$$
\begin{aligned}
& \underset{Q_{T}^{*}}{\mathbb{E}}\left\|S_{\text {The }}\left(X_{\text {in }}\right)-\nabla \log q_{T+}\left(X_{t}\right)\right\|^{2} \\
& \Sigma \underset{Q_{T}}{\mathbb{E}}\left\|S_{T-k_{n}}\left(X_{k n}\right)-\nabla \log q_{T-k n}\left(X_{k n}\right)\right\|^{2}+\underset{\mathbb{F}_{T}^{*}}{\mathbb{F}}\left\|\nabla \log q_{t-k a}\left(X_{k n}\right)-\nabla \log q_{T-\sigma}\left(X_{k n}\right)\right\|^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { movenat of } X \text {. }
\end{aligned}
$$

$G$ change of the ave fuation
wottun cach stop. alory the forvand process
Defore $S_{(x)}=\operatorname{axp}(-(t-k n)) x$. We have $q_{T-k h}=S_{\#} q_{t-t} * N(0,1-\exp (-2(t-k n))$.
 $q=\exp (-H) \& P\left(\mathbb{R}^{d}\right)$. $\nabla H \quad L$ Lhpishatz, $L \leqslant \frac{1}{4\|M\|_{p p}}$.

$$
\Rightarrow\left\|\nabla \log \frac{M_{0} \# q * N\left(0_{0}, M_{4}\right)}{q}(\theta)\right\| \approx L \sqrt{\left\|M_{1}\right\| l_{p} d}+L \zeta\|\theta\|+\left(\zeta+L M_{1} \|_{o p}\right)\|\nabla H(\theta)\| .
$$

Claim. $\mathbb{E}\left\|x_{t}\right\|^{2} \leqslant d \vee m_{2}^{2}, \mathbb{E}\left\|\nabla \log q_{t}\left(x_{1}\right)\right\|^{2} \leqslant L d$, $\mathbb{E}\left\|x_{t}-x_{1}\right\|^{\prime} \leqslant(t-s)^{\prime} m_{2}^{2}+(t-s) d$.

Thus.

$$
\begin{aligned}
\mathbb{E}_{Q_{\text {a }}^{*}}\left\|S_{\text {Th a }}\left(X_{m}\right)-\nabla \log q_{T}+\left(X_{T}\right)\right\|^{2} & =\varepsilon_{\text {sara }}^{2}+L^{2} d h+L^{2} h^{2}\left(d+m_{2}^{2}\right) \\
& +B^{3} h^{2} d \\
& +L^{2} h^{2}\left(h^{2} m_{2}^{2}+d h\right) \\
& \approx \varepsilon_{\text {scare }}^{2}+L^{2} d h+L^{2} m_{2}^{2} h^{2} .
\end{aligned}
$$

