§7. Diffusion Models. Goal: Given ind samples \$ 1:3in from the target distribution P. generate more samples from p (approximately). \$7.4. Langersta and some - matching. erp(-VW)) e.g. Suppose p(A) & exp(-V(X)). V: Rd -> R Langevin diffusion. dX+ = - VU(X+) d+ + J2 dB+ Smore toward is some rembon noise the modes preventing X+ -> (weal) max. Thus If p is hop-concave. (i.e., U is convex). then Lew (Xi) -> p. Question. How to ostimate the score function $\nabla \log p(x) = -\nabla V(x)$?

$$F_{k} + f_{k} + f_{k$$

87.2 Diffusion models.
Formal
Formal
E
Formal
Formal
Formal
Formal
Formal
process

$$dX_{+} = -X_{+} dt + 52 dB_{+}$$
.
 $X_{0} \sim f$.
 $Reverse}$.
 $g_{+} := Jan(X_{+})$.
 $g_{+} := fan(X_{+})$.
 $g_{+} := fan(X_{+}$

Chischetized reverse process. (thep size
$$h > 0$$
, scone adjunctor $S_{+} \approx \nabla \log q_{+}$).
 $dX_{+}^{c} = (X_{+}^{c} + 2S_{T-kh}(X_{T-kh}^{c})) dt + \sqrt{2} dB_{+}, + 6Ikh, (k+1)hI.$
 $X_{+}^{c} \sim T^{d}$, not q_{T} above $(a + sample from g_{T}.$
(No need to replace all X_{+}^{c} with X_{+}^{ch} . The above $(1 - step)$ liver spec can be solved in check from 2 .
(No need to replace all X_{+}^{c} with X_{+}^{ch} . The above $(1 - step)$ liver spec can be solved in check from 2 .
 $P_{+} := \lambda aw(X_{+}^{c}).$
Good: $P_{T} \approx q_{+} = \ell$.
Assumptions. a). $\forall + \pi 0$. $acpp q_{+} = \mathbb{R}^{d}$, $\nabla \log q_{+} \Rightarrow L - dipartite.$
 p_{-} The same $q > 0$. $E_{+} ||k||^{2+\eta} < \infty$. Define $M_{2}^{2} := E_{+} ||k||^{2}$ the gas littles.
 $p_{-} \forall k \in IN$]. $E_{+} ||S_{+}h - \nabla \log q_{+}n||^{2} \le 2^{2}_{Scone}$.

Error sources: i)
$$X_{0}^{c} \sim Y^{d}$$
 instead of q_{T} / formered process not convergibing.
2) Using the time-discretized SDE.
3) non-exact score extimator S.
Thm 2 of (Chen et el. 2023). Under the previous assumptions. Choose $h = T/N < \min\{YL, J\}$.
 \Rightarrow $TV(P_{T}, P) \leq \int KL(P \parallel Y^{d}) \exp(-T) + (1 \tan + 1 \operatorname{Im}_{2}h) \int T + 2 \operatorname{cone} \int T.$
 $\operatorname{error} D$ 2) 3).
1). \widehat{P}_{T} : childradder of X_{T}^{c} if we wan the continuous vector SPE with inst = Y^{d} .
 $TV(\widehat{P}_{T}, P) \leq TV(Y^{d}, q_{T}) \leq \int KL(q_{T} \parallel Y^{d}) \leq \exp(-T) \int KL(P \parallel Y^{d})$
 phe processing inequality $\operatorname{Paster's}$ inequality one of the former of process.

To liandle errors 2) and 2). We need Bissnov's therem.
Thm 1(Gissnov. chillerin). Consider
$$dX_{t} = b(X_{t}) dI + b(X_{t}) dB_{t}$$
. $i \in T$.
and $dX_{t} = [b(X_{t}) + rH.cw] dI + b(X_{t}) dB_{t}$. $t \in T$.
Assume some regularity conditions (and Novibou's condition). Define.
 $u(t, cw) = r(t, w) / b(r+)$. \longrightarrow normalized error
 $M_{t}(w) = exp(-\int_{0}^{t} u(s, w) dB_{s} - \frac{1}{2}\int_{0}^{s} u^{2}(s, w) ds$.
Then, we have $haw(X_{t}) / haw(X_{t}) = M_{t}$ The statement here is wrong. TODO: fix this
 $Goollag$. But $P = haw(X_{t})$. $Q = haw(T_{t})$. Then we have
 $KL(PIQ) = F_{t} lag F_{t} = -F_{t} lag M_{t} = F_{0}^{t} u(s, w) dB_{s} + \frac{1}{2}F_{0}^{t} u^{2}(s, w) ds$.

Remark. Novilevis condition doesn't hold in our setting, and we achedy need some donathy anyment.
Remark. The DDEs, small 12 and
$$\neq$$
 small work are error
 e_{g} \implies $cderry$.
For πDEs , we don't have "worst case"!
Poundly the directization error. Under the associations of the 1, associaty. Novibri's condition, let
 Q^{\pm}_{\pm} and $P_{\pm}^{q_{\pm}}$ denote the distribution of the continuous and discretized reverse pourses the the lived
at q_{\pm} , respectively.
Grand: Bound TVC $P_{\pm}^{q_{\pm}}$, Q_{\pm}^{\pm}).
 P_{\pm} Gillranov \Rightarrow $KL(Q_{\pm}^{\pm} \parallel P_{\pm}^{q_{\pm}}) \in \sum_{b=0}^{N-1} \bigoplus_{b=0}^{p_{\pm}} \int_{D}^{Q_{\pm}(D_{b})} \parallel S_{\pm-bh}(X_{bh}) - \nabla \log g_{\pm+}(X_{\pm}) \parallel^{2} dt$.

-

$$= \sum_{k=1}^{\infty} \left\| \nabla \log \frac{2\pi H}{2\pi i} (X_{kn}) \right\|^{2} = \sum_{k=1}^{\infty} \left\| \nabla \log \frac{2\pi 4}{9\pi i} \frac{2\pi 4}{10} + \frac{2\pi h}{2\pi i} \frac{1}{2\pi i} \left(X_{kn} \right) \right\|^{2}$$

$$= \sum_{k=1}^{\infty} 2d \, d_{k} + \frac{1}{2}h^{2} \sum_{k=1}^{\infty} ||\nabla \log 2\pi - \frac{1}{2}(X_{kn})||^{2}$$

$$= \sum_{k=1}^{\infty} 2d \, d_{k} + \frac{1}{2}h^{2} \sum_{k=1}^{\infty} ||\nabla \log 2\pi - \frac{1}{2}(X_{kn})||^{2}$$

$$= \sum_{k=1}^{\infty} 2d \, d_{k} + \frac{1}{2}h^{2} \sum_{k=1}^{\infty} ||\nabla \log 2\pi - \frac{1}{2}(X_{kn})||^{2}$$

$$= \sum_{k=1}^{\infty} ||\nabla \log 2\pi + \frac{1}{2}(X_{kn})||^{2} = \sum_{k=1}^{\infty} ||\nabla \log 2\pi + \frac{1}{2}(X_{kn})||^{2} + \frac{1}{2}h^{2} d$$

$$= \sum_{k=1}^{\infty} ||\nabla \log 2\pi + \frac{1}{2}(X_{kn})||^{2} = \sum_{k=1}^{\infty} ||\nabla \log 2\pi + \frac{1}{2}(X_{kn})||^{2} + \frac{1}{2}h^{2} d$$

$$= \sum_{k=1}^{\infty} ||\nabla \log 2\pi + \frac{1}{2}(X_{kn})||^{2} = \sum_{k=1}^{\infty} ||\nabla \log 2\pi + \frac{1}{2}(X_{kn})||^{2} + \frac{1}{2}h^{2} d$$

$$= \sum_{k=1}^{\infty} ||\nabla \log 2\pi + \frac{1}{2}(X_{kn})||^{2} = \sum_{k=1}^{\infty} ||\nabla \log 2\pi + \frac{1}{2}(X_{kn})||^{2} + \frac{1}{2}h^{2} d$$

$$= \sum_{k=1}^{\infty} ||\nabla \log 2\pi + \frac{1}{2}(X_{kn})||^{2} = \sum_{k=1}^{\infty} ||\nabla \log 2\pi + \frac{1}{2}(X_{kn})||^{2} + \frac{1}{2}h^{2} d$$

$$= \sum_{k=1}^{\infty} ||\nabla \log 2\pi + \frac{1}{2}(X_{kn})||^{2} = \sum_{k=1}^{\infty} ||\nabla \log 2\pi + \frac{1}{2}(X_{kn})||^{2} + \frac{1}{2}h^{2} d$$

$$= \sum_{k=1}^{\infty} ||\nabla \log 2\pi + \frac{1}{2}(X_{kn})||^{2} +$$