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Background: Depth Separation

Why deeper networks are more powerful than shallow ones?

Eldan & Shamir, 2016; Telgarsky, 2016; Daniely, 2017 ...

There exists some functions that are approximable by deep
networks by not by shallow ones.

Theorem (Theorem 5 of (Safran et al., 2019))

There exists a spherically symmetric input distribution D s.t. no 2-layer
networks with width poly(d/ε) can approximate the target function
f∗(x) = ReLU(1− ∥x∥), x ∈ Rd to MSE ≤ ε, which can be easily
achieved by a 3-layer network.

Question: Is this separation algorithmic?

Can GD + a 3-layer network learn this function?
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Our Results

Theorem (Informal version of Theorem 2.1)

Same setting as in (Safran et al., 2019). There exists a 3-layer network
s.t. for any input dim d and target ε, we can choose layer widths
m1 = poly(d/ε), m2 = Θ(1) so that, with probability ≥ 1− 1/ poly(d/ε)
over random initialization, running a simple variant of GF will reduce the
MSE to ε within poly(d/ε) time.

Main techniques/proof strategy:
A simple framework for multilayer mean-field networks,

where we can reason about multilayer networks with potentially
infinitely many neurons.

Characterizing the infinite-width mean-field dynamics.
poly(d/ε)-width discretization under symmetry.

In general, tracking the mean-field trajectory requires exp(d) neurons
because of the compounding error.

Comparison with (Safran & Lee, 2022): Different target/learner/techniques.
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Outline

1 2-layer mean-field networks and our extension.

2 The infinite-width dynamics.

3 poly(d)-width discretization under symmetry.
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Background: Mean-Field Networks

Let µ be the empirical distribution of {wk}mk=1.

f (x ;W) =
1

m

m∑
k=1

ϕ(x ;wk) =

∫
ϕ(x ;w)dµ(w) =: f (x ;µ).

Allowing µ to be any (nice) distribution; Let m → ∞.

⇒ 2-layer mean-field networks.

Question: How to generalize this to ≥ 3 layers (without introducing
too much math)?
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Our Results: Multilayer Mean-Field Networks

Main challenge: as width → ∞, W 2 becomes an ∞×∞ matrix.

Existing workarounds: distribution over functions, introducing an
indexing set, ...

Our solution: project the intermediate representations to
D-dimensional vectors F (x) (D < ∞).

Reminiscent of the bottleneck structure from ResNets;
Much easier to use;
Retain the permutation invariant property of the neurons.
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The Infinite-Width Dynamics

Learner network: (We choose the bottleneck dimension D to be 1.)

First layer: F (x ;µ1) = E
w1∼µ1

∥w1∥ReLU(w1 · x),

Second layer: f (x ;µ2, µ1) = E
(w2,b2)∼µ2

ReLU(w2F (x ;µ1) + b2).

Lemma: µ1,t spherically symmetric ⇒ F (x ;µ1,t) = αt ∥x∥, αt ∈ R+,
where αt depends only on Ew1 ∥w1∥2.
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The Infinite-Width Dynamics

Lemma: µ1,t spherically symmetric ⇒ F (x ;µ1,t) = αt ∥x∥, αt ∈ R+.

Facts/Claims:
1 The (infinite-width) initial distribution µ1,0, input distribution D, and

target function f∗ are all spherically symmetric.
2 By symmetry, µ1,t remains spherically symmetric for all t ≥ 0.
3 The dynamics of αt depend on µ1,t only through αt .

⇒ The infinite-width dynamics of the first layer are simple! Only
need to look at a single real number αt .

Claim: GF + the infinite-width network will fit the target function.
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Finite-Width Simulation

f is always approximately spherically symmetric.

f eventually fits the target function f∗(x) = ReLU(1− ∥x∥).
(The second layer behaves like a single neuron (w̄2, b̄2).)

Observation: The finite-width network closely tracks the
infinite-width one (at least empirical).
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poly(d)-width discretization

Main challenge: Errors can compound; the discretization error can
potentially grow exponentially fast; need exp(d) neurons to make the
initial error exponentially small.

Observation: The infinite-width network is a symmetrization of the
finite-width network.

Any µ1,t (not necessarily spherically symmetric),

F̃ (x ;µ1,t) := E
x ′∈∥x∥Sd−1

F (x ′) = αt ∥x∥ .

Decomposition of the MSE loss:

L =
1

2
E
x
(f∗(x)− f̃ (x))2 +

1

2
E
x
(f (x)− f̃ (x))2 − E

x
(f∗(x)− f̃ (x))(f (x)− f̃ (x))

Error of the infinite-width network
Discretization error: ≈ (w̄2

2 /2)Ex(F (x)− F̃ (x))2

= 0 as a result of symmetrization
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poly(d)-width discretization (continued)

Decomposition of the MSE loss:

L ≈ 1

2
E
x
(f∗(x)− f̃ (x))2 +

w̄2
2

2
E
x
(F (x)− F̃ (x))2.

Claim: The gradients of these two terms do not interfere with each
other.

⇒ The second term ensures the discretization error does not
grow. (No compounding errors!)
⇒ Only need the initial error to be inversely polynomially small.
(Can be achieved using poly(d) neurons.)
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poly(d)-width discretization (the operational aspect)
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Conclusion

Poster: #134, 4:30 PM - 6:30 PM (today)

Takeaways:

The 3-layer vs 2-layer separation is algorithmic.
With symmetry, the infinite-width dynamics can be much simpler
than the finite-width ones.
With symmetry, poly(d)-width discretization is possible.

Future directions:

General second-layer function.
Subspace version: f∗(x) = ReLU(1−

∥∥A⊤x
∥∥) where A ∈ Rd×r is

column orthogonal.
More generic poly(d)-width discretization.
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