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Background: Depth Separation

@ Why deeper networks are more powerful than shallow ones?

e Eldan & Shamir, 2016; Telgarsky, 2016; Daniely, 2017 ...
o There exists some functions that are approximable by deep
networks by not by shallow ones.

Theorem (Theorem 5 of (Safran et al., 2019))

There exists a spherically symmetric input distribution D s.t. no 2-layer
networks with width poly(d/e) can approximate the target function

f.(x) = ReLU(1 — ||x||), x € R? to MSE < ¢, which can be easily
achieved by a 3-layer network.

@ Question: Is this separation algorithmic?
o Can GD + a 3-layer network learn this function?
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Our Results

Theorem (Informal version of Theorem 2.1)

Same setting as in (Safran et al., 2019). There exists a 3-layer network
s.t. for any input dim d and target €, we can choose layer widths

my = poly(d/e), my = ©(1) so that, with probability > 1 — 1/ poly(d/e)
over random initialization, running a simple variant of GF will reduce the
MSE to e within poly(d/e) time.

e Main techniques/proof strategy:
o A simple framework for multilayer mean-field networks,

@ where we can reason about multilayer networks with potentially
infinitely many neurons.

o Characterizing the infinite-width mean-field dynamics.
o poly(d/e)-width discretization under symmetry.

@ In general, tracking the mean-field trajectory requires exp(d) neurons
because of the compounding error.

@ Comparison with (Safran & Lee, 2022): Different target/learner/techniques.
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Outline

© 2-layer mean-field networks and our extension.
@ The infinite-width dynamics.
@ poly(d)-width discretization under symmetry.
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Background: Mean-Field Networks

o Let i be the empirical distribution of {w}7 ;.
1 m
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@ Allowing p to be any (nice) distribution; Let m — oc.

o = 2-layer mean-field networks.

@ Question: How to generalize this to > 3 layers (without introducing
too much math)?
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Our Results: Multilayer Mean-Field Networks
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@ Main challenge: as width — oo, W5, becomes an oo X oo matrix.

o Existing workarounds: distribution over functions, introducing an

indexing set, ...

@ Our solution: project the intermediate representations to
D-dimensional vectors F(x) (D < 00).

o Reminiscent of the bottleneck structure from ResNets:

o Much easier to use;

o Retain the permutation invariant property of the neurons.
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The Infinite-Width Dynamics

o Learner network: (We choose the bottleneck dimension D to be 1.)
First layer: F(x;p1) = E |[w;i] ReLU(w; - x),
Wi~

Second layer: f(x;po,u1) = E  ReLU(waF(x; 1) + b2).

(wa,b2)~pi2

e Lemma: 111+ spherically symmetric = F(x; pu1¢) = a¢ || x||, e € Ry,
where o depends only on E,, [[w1][>.

Y.W. Ren, M. Zhou, R. Ge Depth Separation with MMF networks 7/13



The Infinite-Width Dynamics

e Lemma: p; spherically symmetric = F(x; 1) = a¢ || x||, ar € Ry
e Facts/Claims:
@ The (infinite-width) initial distribution g4 o, input distribution D, and
target function f, are all spherically symmetric.
© By symmetry, p1,+ remains spherically symmetric for all t > 0.
© The dynamics of a; depend on p1; only through a;.
@ = The infinite-width dynamics of the first layer are simple! Only
need to look at a single real number a;.
@ Claim: GF + the infinite-width network will fit the target function.
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Finite-Width Simulation
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@ f is always approximately spherically symmetric.
o f eventually fits the target function f.(x) = ReLU(1 — ||x||).
o (The second layer behaves like a single neuron (Ws, by).)

@ Observation: The finite-width network closely tracks the
infinite-width one (at least empirical).
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poly(d)-width discretization

@ Main challenge: Errors can compound; the discretization error can
potentially grow exponentially fast; need exp(d) neurons to make the
initial error exponentially small.

@ Observation: The infinite-width network is a symmetrization of the
finite-width network.

o Any f11,+ (not necessarily spherically symmetric),

F(x;p1e) = E  F(X)=a:]x].

x'€||x||s9-1

o Decomposition of the MSE loss:

L= 5@("( x) — F(x))* + S E(f(x) — f(x))* - E(f.(x) = f(x))(f(x) — £(x))
o Error of the infinite-width network
o Discretization error: ~ (w3 /2) Ex(F(x) — F(x))?
o = 0 as a result of symmetrization
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poly(d)-width discretization (continued)

@ Decomposition of the MSE loss:

~ WQ_

L~ SE(R(x) = F(x)? + 2 E(F(x) = F(x))%

N~

@ Claim: The gradients of these two terms do not interfere with each
other.
e = The second term ensures the discretization error does not
grow. (No compounding errors!)
o = Only need the initial error to be inversely polynomially small.
(Can be achieved using poly(d) neurons.)
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poly(d)-width discretization (the operational aspect)

The General Case Under Symmetry
infinite-width trajectory infinite-width/symmetrized
trajectory
..... ~ \/
R finite-width ‘gt ™ finite-width
: -3 P inite-widt

network ~ TTte. » network
Pointing towards the
infinite-width trajectory.

No compounding errors!

Compounding errors!

Q: How to show this?
A: Taylor expand the dynamics around the infinite-width trajectory.

Look at the first-order terms.
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Conclusion

o Poster: #134, 4:30 PM - 6:30 PM (today)
o Takeaways:

o The 3-layer vs 2-layer separation is algorithmic.

o With symmetry, the infinite-width dynamics can be much simpler
than the finite-width ones.

o With symmetry, poly(d)-width discretization is possible.

@ Future directions:

o General second-layer function.

o Subspace version: f,(x) = ReLU(1 — HATXH) where A € R9*" is
column orthogonal.

o More generic poly(d)-width discretization.
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