
Emergence and scaling laws for SGD learning of
shallow neural networks.

Yunwei Ren*1, Eshaan Nichani*1, Denny Wu23, Jason D. Lee1

1Princeton University 2New York University 3Flatiron Institute

April 22, 2025

1 / 20

Task

Target function (two-layer orthogonal networks).

f∗(x) =
∑P

p=1 apσ(w
∗
p · x), x ∼ N (0, I d) ,

where ap > 0, {w∗
p}p ⊂ Sd−1 are the unknown ground truth

weights and σ is the activation/link function.

▶ (orthogonal weights) {w∗
k}k is orthonormal.

▶ (large width) 1 ≪ P ≪ dc .

▶ (large condition number) κ := maxp ap/minp ap ≫ 1.

Q. Can we learn this function class using a two-layer network and
vanilla online SGD?

▶ poly(d ,P, κ) sample/iteration complexity;

▶ Õ(P) learner neurons;

▶ No strange modifications to the algorithm.

2 / 20

Task

Target function (two-layer orthogonal networks).

f∗(x) =
∑P

p=1 apσ(w
∗
p · x), x ∼ N (0, I d) ,

where ap > 0, {w∗
p}p ⊂ Sd−1 are the unknown ground truth

weights and σ is the activation/link function.

▶ (orthogonal weights) {w∗
k}k is orthonormal.

▶ (large width) 1 ≪ P ≪ dc .

▶ (large condition number) κ := maxp ap/minp ap ≫ 1.

Q. Can we learn this function class using a two-layer network and
vanilla online SGD?

▶ poly(d ,P, κ) sample/iteration complexity;

▶ Õ(P) learner neurons;

▶ No strange modifications to the algorithm.

2 / 20

Motivations from the empirical side

▶ Neural scaling laws [Kaplan et al. 20], [Hoffmann et al. 22]
Observed in practice that increasing compute and data leads to
smooth power-law decay in the loss.

▶ Emergence [Wei et al. 22], [Ganguli et al. 22]
Learning of individual tasks/skills exhibits sharp transitions.

▶ Q. How to reconcile these two observations?

3 / 20

Motivations from the empirical side

Q. How to reconcile the emergent behavior in skill acquisition and
the smooth power-law decay in the loss?

Hypothesis (Additive Model [Michaud et al. 24], [Nam et al. 24])

▶ Cumulative objective can be decomposed into a large number of
distinct “skills”, learning of each exhibits sharp transitions.

▶ Combination of numerous emergent learning curves at different
time scales results in a power-law rate.

3 / 20

Motivations from the empirical side
Q. How to reconcile the emergent behavior in skill acquisition and
the smooth power-law decay in the loss?

Hypothesis (Additive Model [Michaud et al. 24], [Nam et al. 24])

▶ Cumulative objective can be decomposed into a large number of
distinct “skills”, learning of each exhibits sharp transitions.

▶ Combination of numerous emergent learning curves at different
time scales results in a power-law rate.

compute

Cumulative loss

Loss at p-th task

3 / 20

Motivations from the empirical side
Q. How to reconcile the emergent behavior in skill acquisition and
the smooth power-law decay in the loss?

Hypothesis (Additive Model [Michaud et al. 24], [Nam et al. 24])

▶ Cumulative objective can be decomposed into a large number of
distinct “skills”, learning of each exhibits sharp transitions.

▶ Combination of numerous emergent learning curves at different
time scales results in a power-law rate.

compute

Cumulative loss

Loss at p-th task

3 / 20

Motivations from the empirical side
Q. How to reconcile the emergent behavior in skill acquisition and
the smooth power-law decay in the loss?

Hypothesis (Additive Model [Michaud et al. 24], [Nam et al. 24])

▶ Cumulative objective can be decomposed into a large number of
distinct “skills”, learning of each exhibits sharp transitions.

▶ Combination of numerous emergent learning curves at different
time scales results in a power-law rate.

compute

Cumulative loss

Loss at p-th task

This work: theoretical justification of
the additive model hypothesis in SGD
learning of the target function:

f∗(x) =
∑P

p=1 apσ(w
∗
p · x),

with ap ∝ p−β.

3 / 20

Motivations from the theory side

Theorem ([Li, Ma, Zhang, 2020])

▶ (Orthogonal, well-conditioned teacher)
f∗(x) =

∑d
p=1 a

∗
p |⟨ep, x⟩| with condition number

maxp a
∗
p/minp a

∗
p = κ.

▶ (extremely overparameterized, 2-homogeneous student)
f (x) =

∑m
k=1 ∥wk∥ReLU(wk · x) with width m = eκ poly d.

⇒ Online SGD can efficiently minimize L and recovery {(a∗p, ep)}p.

(Motivation: separating kernel methods and neural networks.)

Proof strategy.

▶ Convert the task to orthogonal tensor decomposition using
Hermite analysis.

▶ Gradient descent mimics the tensor power method.

▶ 4th order orthogonal tensor decomposition can be efficiently
solved by the tensor power method (with deflation).

4 / 20

Motivations from the theory side

Theorem ([Li, Ma, Zhang, 2020])

▶ (Orthogonal, well-conditioned teacher)
f∗(x) =

∑d
p=1 a

∗
p |⟨ep, x⟩| with condition number

maxp a
∗
p/minp a

∗
p = κ.

▶ (extremely overparameterized, 2-homogeneous student)
f (x) =

∑m
k=1 ∥wk∥ReLU(wk · x) with width m = eκ poly d.

⇒ Online SGD can efficiently minimize L and recovery {(a∗p, ep)}p.

(Motivation: separating kernel methods and neural networks.)

Proof strategy.

▶ Convert the task to orthogonal tensor decomposition using
Hermite analysis.

▶ Gradient descent mimics the tensor power method.

▶ 4th order orthogonal tensor decomposition can be efficiently
solved by the tensor power method (with deflation).

4 / 20

The eκ factor

Why does [LMZ20] need m = eκ poly d neurons?

In tensor power method (4th order, without deflation):
▶ Need ap v̄

2
p > maxq ̸=p aq v̄

2
q for v to converge to w∗

p.
▶ ⇒ Need eκ poly d neurons to cover all directions.

5 / 20

The eκ factor

Why does [LMZ20] need m = eκ poly d neurons?

In tensor power method (4th order, without deflation):
▶ Need ap v̄

2
p > maxq ̸=p aq v̄

2
q for v to converge to w∗

p.
▶ ⇒ Need eκ poly d neurons to cover all directions.

5 / 20

The eκ factor

Why removing the eκ factor (without using manual deflation
or reinitialization) is meaningful?

In practice:

▶ Can not expect the condition number to be small;

▶ Despite being overparameterized, the number of neurons in each
layer is not extremely large;

▶ Practitioners only use variants of SGD with no manual deflation.

A conceptual question:
Can we efficiently learn all directions in parallel when the con-
dition number is large?

6 / 20

The eκ factor

Why removing the eκ factor (without using manual deflation
or reinitialization) is meaningful?

In practice:

▶ Can not expect the condition number to be small;

▶ Despite being overparameterized, the number of neurons in each
layer is not extremely large;

▶ Practitioners only use variants of SGD with no manual deflation.

A conceptual question:
Can we efficiently learn all directions in parallel when the con-
dition number is large?

6 / 20

The eκ factor

Why removing the eκ factor (without using manual deflation
or reinitialization) is meaningful?

In practice:

▶ Can not expect the condition number to be small;

▶ Despite being overparameterized, the number of neurons in each
layer is not extremely large;

▶ Practitioners only use variants of SGD with no manual deflation.

A conceptual question:
Can we efficiently learn all directions in parallel when the con-
dition number is large?

6 / 20

The eκ factor

Why removing the eκ factor (without using manual deflation
or reinitialization) is meaningful?

In practice:

▶ Can not expect the condition number to be small;

▶ Despite being overparameterized, the number of neurons in each
layer is not extremely large;

▶ Practitioners only use variants of SGD with no manual deflation.

A conceptual question:
Can we efficiently learn all directions in parallel when the con-
dition number is large?

6 / 20

The eκ factor

Why removing the eκ factor (without using manual deflation
or reinitialization) is meaningful?

In practice:

▶ Can not expect the condition number to be small;

▶ Despite being overparameterized, the number of neurons in each
layer is not extremely large;

▶ Practitioners only use variants of SGD with no manual deflation.

A conceptual question:
Can we efficiently learn all directions in parallel when the con-
dition number is large?

6 / 20

The eκ factor

Why removing the eκ factor (without using manual deflation
or reinitialization) is meaningful?

In practice:

▶ Can not expect the condition number to be small;

▶ Despite being overparameterized, the number of neurons in each
layer is not extremely large;

▶ Practitioners only use variants of SGD with no manual deflation.

A conceptual question:
Can we efficiently learn all directions in parallel when the con-
dition number is large?

6 / 20

A brief summary of our discussion so far

▶ Task. Learning orthogonal shallow networks

f∗(x) =
∑P

p=1 apσ(w
∗
p · x).

▶ Algorithm. Online SGD with no manual deflation/reinitialization.

▶ Motivation (Additive model hypothesis)
▶ Does the learning of each direction apw∗

p has a sharp transition?
▶ Can they lead to a non-trivial power law decay in the loss?

▶ Motivation (Learning when the condition number κ ≫ 1)
▶ Is it necessary to have eκ neurons?
▶ How to avoid the large directions attracting all the neurons?

7 / 20

A brief summary of our discussion so far

▶ Task. Learning orthogonal shallow networks

f∗(x) =
∑P

p=1 apσ(w
∗
p · x).

▶ Algorithm. Online SGD with no manual deflation/reinitialization.
▶ Motivation (Additive model hypothesis)

▶ Does the learning of each direction apw∗
p has a sharp transition?

▶ Can they lead to a non-trivial power law decay in the loss?

▶ Motivation (Learning when the condition number κ ≫ 1)
▶ Is it necessary to have eκ neurons?
▶ How to avoid the large directions attracting all the neurons?

7 / 20

A brief summary of our discussion so far

▶ Task. Learning orthogonal shallow networks

f∗(x) =
∑P

p=1 apσ(w
∗
p · x).

▶ Algorithm. Online SGD with no manual deflation/reinitialization.
▶ Motivation (Additive model hypothesis)

▶ Does the learning of each direction apw∗
p has a sharp transition?

▶ Can they lead to a non-trivial power law decay in the loss?

▶ Motivation (Learning when the condition number κ ≫ 1)
▶ Is it necessary to have eκ neurons?
▶ How to avoid the large directions attracting all the neurons?

7 / 20

A brief summary of our discussion so far

▶ Task. Learning orthogonal shallow networks

f∗(x) =
∑P

p=1 apσ(w
∗
p · x).

▶ Algorithm. Online SGD with no manual deflation/reinitialization.
▶ Motivation (Additive model hypothesis)

▶ Does the learning of each direction apw∗
p has a sharp transition?

▶ Yes, when IE(σ) > 2. [Ben Arous, Gheissari, Jagannath, 2021]

▶ Can they lead to a non-trivial power law decay in the loss?
▶ Yes. (This work)

▶ Motivation (Learning when the condition number κ ≫ 1)
▶ Is it necessary to have eκ neurons?

▶ No. O(P logP) neurons suffice. (This work)

▶ How to avoid the large directions attracting all the neurons?
▶ Rely on the sharp transitions/emergence. (This work)

7 / 20

Emergence in single-index models

Definition (Single-index models)

A single-index model is a two-layer neural network with one neuron:

f∗(x) = σ(w∗ · x), ∀x ∈ Rd ,

where w∗ ∈ Sd−1 is the ground truth direction, and σ : R → R the
link function.

▶ A long history, dated at least to [Ichimura, 1993].

▶ Have different names: generalized linear models, learning a single
neuron, phase retrieval...

Q. Sample complexity of learning a single-index model when
x ∼ N (0, I d)?

8 / 20

Information exponent [Ben Arous, Gheissari, Jagannath, 2021]

Hermite expansion. σ(z) =
∑∞

i=0 σ̂ihi , where hi is the i-th
(normalized) Hermite polynomial and σ̂i = Ez∼N (0,1)[σ(z)hi (z)].

▶ Fact. Ex [hi (v · x)hj(w · x)] = 1{i = j} ⟨v ,w⟩i .

Definition (Information exponent)

Suppose σ =
∑∞

i=1 σ̂ihi . The information exponent of σ is

IE(σ) := min {i > 0 : σ̂i ̸= 0} .

9 / 20

Information exponent [Ben Arous, Gheissari, Jagannath, 2021]

Hermite expansion. σ(z) =
∑∞

i=0 σ̂ihi , where hi is the i-th
(normalized) Hermite polynomial and σ̂i = Ez∼N (0,1)[σ(z)hi (z)].

▶ Fact. Ex [hi (v · x)hj(w · x)] = 1{i = j} ⟨v ,w⟩i .

Definition (Information exponent)

Suppose σ =
∑∞

i=1 σ̂ihi . The information exponent of σ is

IE(σ) := min {i > 0 : σ̂i ̸= 0} .

E
x
[σ(w∗ · x)σ(w · x)] =

∞∑
i ,j=IE

σ̂i σ̂j Ex [hi (w∗ · x)hj(w · x)]

9 / 20

Information exponent [Ben Arous, Gheissari, Jagannath, 2021]

Hermite expansion. σ(z) =
∑∞

i=0 σ̂ihi , where hi is the i-th
(normalized) Hermite polynomial and σ̂i = Ez∼N (0,1)[σ(z)hi (z)].

▶ Fact. Ex [hi (v · x)hj(w · x)] = 1{i = j} ⟨v ,w⟩i .

Definition (Information exponent)

Suppose σ =
∑∞

i=1 σ̂ihi . The information exponent of σ is

IE(σ) := min {i > 0 : σ̂i ̸= 0} .

E
x
[σ(w∗ · x)σ(w · x)] =

∞∑
i ,j=IE

σ̂i σ̂j Ex [hi (w∗ · x)hj(w · x)]

=
∞∑

i=IE

σ̂2
i Ex [hi (w∗ · x)hi (w · x)]

+
∑
i ̸=j

σ̂i σ̂j Ex [hi (w∗ · x)hj(w · x)]

9 / 20

Information exponent [Ben Arous, Gheissari, Jagannath, 2021]

Hermite expansion. σ(z) =
∑∞

i=0 σ̂ihi , where hi is the i-th
(normalized) Hermite polynomial and σ̂i = Ez∼N (0,1)[σ(z)hi (z)].

▶ Fact. Ex [hi (v · x)hj(w · x)] = 1{i = j} ⟨v ,w⟩i .

Definition (Information exponent)

Suppose σ =
∑∞

i=1 σ̂ihi . The information exponent of σ is

IE(σ) := min {i > 0 : σ̂i ̸= 0} .

E
x
[σ(w∗ · x)σ(w · x)] =

∞∑
i ,j=IE

σ̂i σ̂j Ex [hi (w∗ · x)hj(w · x)]

= σ̂2
IE ⟨w∗,w⟩IE︸ ︷︷ ︸

the dominating term

+
∞∑

i=IE+1

σ̂2
i ⟨w∗,w⟩i

+

(((((((((((((((∑
i ̸=j

σ̂i σ̂j Ex [hi (w∗ · x)hj(w · x)]
9 / 20

Information exponent [Ben Arous, Gheissari, Jagannath, 2021]

Theorem ([BAGJ21])

Suppose IE(σ) = k and our algorithm is online (spherical) SGD
with step size η = Θ̃(1/dk/2∨1). Then, we can recover w∗ with

▶ O(1/η) = Õ(d) iterations/samples if k = 1;

▶ O(log d/η) = Õ(d log d) iterations/samples if k = 2;

▶ O(dk/2−1/η) = Õ(dk−1) iterations/samples if k ≥ 3.

Emergent behavior:
When k = IE ≥ 3,

▶ From d−1/2 to d−1/2+δ: Θ̃(dk−1) steps;

▶ From d−1/2+δ to 1− ε: o(dk−1) steps.

10 / 20

Information exponent [Ben Arous, Gheissari, Jagannath, 2021]

Theorem ([BAGJ21])

Suppose IE(σ) = k and our algorithm is online (spherical) SGD
with step size η = Θ̃(1/dk/2∨1). Then, we can recover w∗ with

▶ O(1/η) = Õ(d) iterations/samples if k = 1;

▶ O(log d/η) = Õ(d log d) iterations/samples if k = 2;

▶ O(dk/2−1/η) = Õ(dk−1) iterations/samples if k ≥ 3.

Emergent behavior:
When k = IE ≥ 3,

▶ From d−1/2 to d−1/2+δ: Θ̃(dk−1) steps;

▶ From d−1/2+δ to 1− ε: o(dk−1) steps.

10 / 20

[BAGJ21] Proof sketch

(Assume IE = 4 for simplicity)
Dynamics of mt := ⟨w∗,w t⟩2:

m0 ≈ 1/d ,

mt+1 ≈ mt + ηa(1−mt)m
2
t + η2ζt+1

▶ (Need η = Õ(1/d2) to absorb the noise into the signal)

▶ Continuous-time counterpart:

ṁt = a(1−mt)m
2
t ≈ am2

t

▶ ⇒ sharp transition (faster than exponential) around
time 1/(am0) ≈ d/a.

11 / 20

[BAGJ21] Proof sketch

(Assume IE = 4 for simplicity)
Dynamics of mt := ⟨w∗,w t⟩2:

m0 ≈ 1/d ,

mt+1 ≈ mt + ηa(1−mt)m
2
t + η2ζt+1

▶ (Need η = Õ(1/d2) to absorb the noise into the signal)

▶ Continuous-time counterpart:

ṁt = a(1−mt)m
2
t ≈ am2

t

▶ ⇒ sharp transition (faster than exponential) around
time 1/(am0) ≈ d/a.

11 / 20

[BAGJ21] Proof sketch

(Assume IE = 4 for simplicity)
Dynamics of mt := ⟨w∗,w t⟩2:

m0 ≈ 1/d ,

mt+1 ≈ mt + ηa(1−mt)m
2
t + η2ζt+1

▶ (Need η = Õ(1/d2) to absorb the noise into the signal)

▶ Continuous-time counterpart:

ṁt = a(1−mt)m
2
t ≈ am2

t

▶ ⇒ sharp transition (faster than exponential) around
time 1/(am0) ≈ d/a.

11 / 20

[BAGJ21] Proof sketch

(Assume IE = 4 for simplicity)
Dynamics of mt := ⟨w∗,w t⟩2:

m0 ≈ 1/d ,

mt+1 ≈ mt + ηa(1−mt)m
2
t + η2ζt+1

▶ (Need η = Õ(1/d2) to absorb the noise into the signal)

▶ Continuous-time counterpart:

ṁt = a(1−mt)m
2
t ≈ am2

t ⇒ mt ≈
1

1/m0 − at

▶ ⇒ sharp transition (faster than exponential) around
time 1/(am0) ≈ d/a.

11 / 20

[BAGJ21] Proof sketch

(Assume IE = 4 for simplicity)
Dynamics of mt := ⟨w∗,w t⟩2:

m0 ≈ 1/d ,

mt+1 ≈ mt + ηa(1−mt)m
2
t + η2ζt+1

▶ (Need η = Õ(1/d2) to absorb the noise into the signal)

▶ Continuous-time counterpart:

ṁt = a(1−mt)m
2
t ≈ am2

t ⇒ mt ≈
1

1/m0 − at

▶ ⇒ sharp transition (faster than exponential) around
time 1/(am0) ≈ d/a.

11 / 20

The idealized dynamics

Our target function.

f∗(x) =
∑P

p=1 apσ(w
∗
p · x), x ∼ N (0, I d) ,

(1) P ≪ dc ; (2) {w∗
p}p orthonormal; (3) σ even;

(4) For simplicity, assume IE(σ) = 4.

▶ If we assume everything is decoupled ...
▶ One vp for one apσ(w∗

p · x) and no interaction between them.

▶ ⇒ Direction apσ(w∗
p · x) gets learned around time

Tp :=
(
ηap

〈
w∗

p, v̄p

〉2)−1
.

▶ ⇒ Loss satisfies

L(t) ≈
P∑

p=1

a2p1 {t < Tp} =
P∑

p=1

a2p1

{
t <

(
ηap

〈
w∗

p, v̄p

〉2)−1
}
.

12 / 20

The idealized dynamics

Our target function.

f∗(x) =
∑P

p=1 apσ(w
∗
p · x), x ∼ N (0, I d) ,

(1) P ≪ dc ; (2) {w∗
p}p orthonormal; (3) σ even;

(4) For simplicity, assume IE(σ) = 4.

▶ If we assume everything is decoupled ...
▶ One vp for one apσ(w∗

p · x) and no interaction between them.

▶ ⇒ Direction apσ(w∗
p · x) gets learned around time

Tp :=
(
ηap

〈
w∗

p, v̄p

〉2)−1
.

▶ ⇒ Loss satisfies

L(t) ≈
P∑

p=1

a2p1 {t < Tp} =
P∑

p=1

a2p1

{
t <

(
ηap

〈
w∗

p, v̄p

〉2)−1
}
.

12 / 20

The idealized dynamics

Our target function.

f∗(x) =
∑P

p=1 apσ(w
∗
p · x), x ∼ N (0, I d) ,

(1) P ≪ dc ; (2) {w∗
p}p orthonormal; (3) σ even;

(4) For simplicity, assume IE(σ) = 4.

▶ If we assume everything is decoupled ...
▶ One vp for one apσ(w∗

p · x) and no interaction between them.

▶ ⇒ Direction apσ(w∗
p · x) gets learned around time

Tp :=
(
ηap

〈
w∗

p, v̄p

〉2)−1
.

▶ ⇒ Loss satisfies

L(t) ≈
P∑

p=1

a2p1 {t < Tp} =
P∑

p=1

a2p1

{
t <

(
ηap

〈
w∗

p, v̄p

〉2)−1
}
.

12 / 20

The idealized dynamics

Our target function.

f∗(x) =
∑P

p=1 apσ(w
∗
p · x), x ∼ N (0, I d) ,

(1) P ≪ dc ; (2) {w∗
p}p orthonormal; (3) σ even;

(4) For simplicity, assume IE(σ) = 4.

▶ If we assume everything is decoupled ...
▶ One vp for one apσ(w∗

p · x) and no interaction between them.

▶ ⇒ Direction apσ(w∗
p · x) gets learned around time

Tp :=
(
ηap

〈
w∗

p, v̄p

〉2)−1
.

▶ ⇒ Loss satisfies

L(t) ≈
P∑

p=1

a2p1 {t < Tp} =
P∑

p=1

a2p1

{
t <

(
ηap

〈
w∗

p, v̄p

〉2)−1
}
.

12 / 20

From the idealized dynamics to the scaling law

L(t) ≈
P∑

p=1

a2p1 {t < Tp} =
P∑

p=1

a2p1

{
t <

(
ηap

〈
w∗

p, v̄p

〉2)−1
}
.

Assumption (power law signal)

ap = p−β for some constant β > 1/2.

13 / 20

From the idealized dynamics to the scaling law

L(t) ≈
P∑

p=1

a2p1 {t < Tp} =
P∑

p=1

a2p1

{
t <

(
ηap

〈
w∗

p, v̄p

〉2)−1
}
.

Assumption (power law signal)

ap = p−β for some constant β > 1/2.

L(Tp) ≈
P∑

q=p

a2q

13 / 20

From the idealized dynamics to the scaling law

L(t) ≈
P∑

p=1

a2p1 {t < Tp} =
P∑

p=1

a2p1

{
t <

(
ηap

〈
w∗

p, v̄p

〉2)−1
}
.

Assumption (power law signal)

ap = p−β for some constant β > 1/2.

L(Tp) ≈
P∑

q=p

a2q =
P∑

q=p

q−2β

13 / 20

From the idealized dynamics to the scaling law

L(t) ≈
P∑

p=1

a2p1 {t < Tp} =
P∑

p=1

a2p1

{
t <

(
ηap

〈
w∗

p, v̄p

〉2)−1
}
.

Assumption (power law signal)

ap = p−β for some constant β > 1/2.

L(Tp) ≈
P∑

q=p

a2q =
P∑

q=p

q−2β ≈
∞∑
q=p

q−2β

13 / 20

From the idealized dynamics to the scaling law

L(t) ≈
P∑

p=1

a2p1 {t < Tp} =
P∑

p=1

a2p1

{
t <

(
ηap

〈
w∗

p, v̄p

〉2)−1
}
.

Assumption (power law signal)

ap = p−β for some constant β > 1/2.

L(Tp) ≈
P∑

q=p

a2q =
P∑

q=p

q−2β ≈
∞∑
q=p

q−2β ≈
∫ ∞

p

s−2β ds =
p1−2b

2b − 1
.

13 / 20

From the idealized dynamics to the scaling law

L(t) ≈
P∑

p=1

a2p1 {t < Tp} =
P∑

p=1

a2p1

{
t <

(
ηap

〈
w∗

p, v̄p

〉2)−1
}
.

Assumption (power law signal)

ap = p−β for some constant β > 1/2.

L(Tp) ≈
P∑

q=p

a2q =
P∑

q=p

q−2β ≈
∞∑
q=p

q−2β ≈
∫ ∞

p

s−2β ds =
p1−2b

2b − 1
.

Formal change-of-variables:

Tp =
(
ηp−β

〈
w∗

p, v̄p

〉2)−1

= t ⇔ p =
(
ηt

〈
w∗

p, v̄p

〉2)1/β

≈ (ηt/d)1/β

13 / 20

From the idealized dynamics to the scaling law

L(t) ≈
P∑

p=1

a2p1 {t < Tp} =
P∑

p=1

a2p1

{
t <

(
ηap

〈
w∗

p, v̄p

〉2)−1
}
.

Assumption (power law signal)

ap = p−β for some constant β > 1/2.

L(Tp) ≈
P∑

q=p

a2q =
P∑

q=p

q−2β ≈
∞∑
q=p

q−2β ≈
∫ ∞

p

s−2β ds =
p1−2b

2b − 1
.

Formal change-of-variables:

Tp =
(
ηp−β

〈
w∗

p, v̄p

〉2)−1

= t ⇔ p =
(
ηt

〈
w∗

p, v̄p

〉2)1/β

≈ (ηt/d)1/β

⇒ L(t) ≈ 1

2b − 1
(ηt/d)(1−2β)/β

13 / 20

From the idealized to the actual dynamics

▶ Issue of the existing analyses.
▶ Larger directions may attract too many

neurons.
▶ Need eκ neurons to cover all directions.

Claim 1. If all irrelevant coordinates v̄2k,p are Õ(1/d), then
the dynamics can be decoupled. (incoherence ⇒ decoupled
dynamics)

Claim 2. Sharp transitions ⇒ small irrelevant coordinates.

14 / 20

From the idealized to the actual dynamics

▶ Issue of the existing analyses.
▶ Larger directions may attract too many

neurons.
▶ Need eκ neurons to cover all directions.

Claim 1. If all irrelevant coordinates v̄2k,p are Õ(1/d), then
the dynamics can be decoupled. (incoherence ⇒ decoupled
dynamics)

Claim 2. Sharp transitions ⇒ small irrelevant coordinates.

14 / 20

Proof intuition

▶ At first, most neurons get attracted by direction a1w∗
1.

▶ (Decoupled dynamics ⇒ partial progress can be preserved.)

15 / 20

Proof intuition
▶ Sharp transitions ⇒ v̄23,1 = Õ(1/d) until t ≈ Tcritical.

▶ v1 fits a1w∗
1 around time T1 < Tcritical and kills the signal.

▶ ⇒ v̄23,1 stays small throughout training.

16 / 20

Proof intuition

▶ The remaining neurons get attracted by a2w∗
2.

17 / 20

Proof intuition
▶ v2 fits a2w∗

2.

▶ The other neurons stay close to the initialization (and preserve
the partial progress).

18 / 20

Main results

Theorem (Optimization)

▶ Teacher network: f∗(x) =
∑P

p=1 apσ(w
∗
p · x), where P ≪ dc , {w∗

p}p
orthonormal, σ even and J := IE(σ) ≥ 4.

▶ Student network: f (x) =
∑m

k=1 ∥v k∥2 σ(v̄ k · x) with m = O(P logP).

▶ Algorithm: online SGD with step size η = 1/(dJ/2 poly(P, κ)).

▶ Conclusion: there exists an injective ι : [P] → [m] such that:

(a) Unused neurons. ∥v k∥ is small if k /∈ ι([P]).
(b) Emergence. ∀p ∈ [P], v ι(p) converges to and fits apw∗

p

at time (1± o(1))Tp, where Tp := 1/(8ηap
〈
v̄ ι(p),w∗

p

〉J−2
).

19 / 20

Main results

Theorem (Optimization)

▶ Teacher network: f∗(x) =
∑P

p=1 apσ(w
∗
p · x), where P ≪ dc , {w∗

p}p
orthonormal, σ even and J := IE(σ) ≥ 4.

▶ Student network: f (x) =
∑m

k=1 ∥v k∥2 σ(v̄ k · x) with m = O(P logP).

▶ Algorithm: online SGD with step size η = 1/(dJ/2 poly(P, κ)).

▶ Conclusion: there exists an injective ι : [P] → [m] such that:

(a) Unused neurons. ∥v k∥ is small if k /∈ ι([P]).
(b) Emergence. ∀p ∈ [P], v ι(p) converges to and fits apw∗

p

at time (1± o(1))Tp, where Tp := 1/(8ηap
〈
v̄ ι(p),w∗

p

〉J−2
).

19 / 20

Main results

Theorem (Optimization)

▶ Teacher network: f∗(x) =
∑P

p=1 apσ(w
∗
p · x), where P ≪ dc , {w∗

p}p
orthonormal, σ even and J := IE(σ) ≥ 4.

▶ Student network: f (x) =
∑m

k=1 ∥v k∥2 σ(v̄ k · x) with m = O(P logP).

▶ Algorithm: online SGD with step size η = 1/(dJ/2 poly(P, κ)).

▶ Conclusion: there exists an injective ι : [P] → [m] such that:

(a) Unused neurons. ∥v k∥ is small if k /∈ ι([P]).
(b) Emergence. ∀p ∈ [P], v ι(p) converges to and fits apw∗

p

at time (1± o(1))Tp, where Tp := 1/(8ηap
〈
v̄ ι(p),w∗

p

〉J−2
).

19 / 20

Main results

Theorem (Optimization)

▶ Teacher network: f∗(x) =
∑P

p=1 apσ(w
∗
p · x), where P ≪ dc , {w∗

p}p
orthonormal, σ even and J := IE(σ) ≥ 4.

▶ Student network: f (x) =
∑m

k=1 ∥v k∥2 σ(v̄ k · x) with m = O(P logP).

▶ Algorithm: online SGD with step size η = 1/(dJ/2 poly(P, κ)).

▶ Conclusion: there exists an injective ι : [P] → [m] such that:

(a) Unused neurons. ∥v k∥ is small if k /∈ ι([P]).
(b) Emergence. ∀p ∈ [P], v ι(p) converges to and fits apw∗

p

at time (1± o(1))Tp, where Tp := 1/(8ηap
〈
v̄ ι(p),w∗

p

〉J−2
).

19 / 20

Main results

Theorem (Optimization)

▶ Teacher network: f∗(x) =
∑P

p=1 apσ(w
∗
p · x), where P ≪ dc , {w∗

p}p
orthonormal, σ even and J := IE(σ) ≥ 4.

▶ Student network: f (x) =
∑m

k=1 ∥v k∥2 σ(v̄ k · x) with m = O(P logP).

▶ Algorithm: online SGD with step size η = 1/(dJ/2 poly(P, κ)).

▶ Conclusion: there exists an injective ι : [P] → [m] such that:

(a) Unused neurons. ∥v k∥ is small if k /∈ ι([P]).
(b) Emergence. ∀p ∈ [P], v ι(p) converges to and fits apw∗

p

at time (1± o(1))Tp, where Tp := 1/(8ηap
〈
v̄ ι(p),w∗

p

〉J−2
).

19 / 20

Main results

Theorem (Optimization)

▶ Teacher network: f∗(x) =
∑P

p=1 apσ(w
∗
p · x), where P ≪ dc , {w∗

p}p
orthonormal, σ even and J := IE(σ) ≥ 4.

▶ Student network: f (x) =
∑m

k=1 ∥v k∥2 σ(v̄ k · x) with m = O(P logP).

▶ Algorithm: online SGD with step size η = 1/(dJ/2 poly(P, κ)).

▶ Conclusion: there exists an injective ι : [P] → [m] such that:

(a) Unused neurons. ∥v k∥ is small if k /∈ ι([P]).
(b) Emergence. ∀p ∈ [P], v ι(p) converges to and fits apw∗

p

at time (1± o(1))Tp, where Tp := 1/(8ηap
〈
v̄ ι(p),w∗

p

〉J−2
).

Corollary (Scaling laws)

ap ∝ p−β for β > 1/2. Width-m learner (maybe under-parameterized).
Online SGD with step size η and t iterations/samples.

L(m, t) ∼ m1−2β ∨
(
ηtd1−J/2

) 1−2β
β

19 / 20

Conclusion and remarks

Takeaway

▶ The additive model hypothesis is true at least for orthogonal
two-layer networks.

▶ Learning different directions/features with vastly different signal
strength without deflation/reinitialization is possible.

▶ Sharp transitions help preserve the randomness from the
initialization and prevent model collapse.

Remarks on sharp transitions

▶ Higher-order terms ⇒ sharp transitions.
▶ Examples of sharp transitions.

▶ L(w) = (w∗ − w)2, L(w) = (w∗ − w2)2. X
▶ L(w) = (w∗ − w1w2w3)

2, L(w) = (w∗ − wk)2, k ≥ 3. ✓

▶ Q. Do deep architectures always lead to sharp transitions?

▶ Q. Do sharp transitions help training/feature learning in practice?

20 / 20

Conclusion and remarks

Takeaway

▶ The additive model hypothesis is true at least for orthogonal
two-layer networks.

▶ Learning different directions/features with vastly different signal
strength without deflation/reinitialization is possible.

▶ Sharp transitions help preserve the randomness from the
initialization and prevent model collapse.

Remarks on sharp transitions

▶ Higher-order terms ⇒ sharp transitions.
▶ Examples of sharp transitions.

▶ L(w) = (w∗ − w)2, L(w) = (w∗ − w2)2. X
▶ L(w) = (w∗ − w1w2w3)

2, L(w) = (w∗ − wk)2, k ≥ 3. ✓

▶ Q. Do deep architectures always lead to sharp transitions?

▶ Q. Do sharp transitions help training/feature learning in practice?

20 / 20

Conclusion and remarks

Takeaway

▶ The additive model hypothesis is true at least for orthogonal
two-layer networks.

▶ Learning different directions/features with vastly different signal
strength without deflation/reinitialization is possible.

▶ Sharp transitions help preserve the randomness from the
initialization and prevent model collapse.

Remarks on sharp transitions

▶ Higher-order terms ⇒ sharp transitions.
▶ Examples of sharp transitions.

▶ L(w) = (w∗ − w)2, L(w) = (w∗ − w2)2. X
▶ L(w) = (w∗ − w1w2w3)

2, L(w) = (w∗ − wk)2, k ≥ 3. ✓

▶ Q. Do deep architectures always lead to sharp transitions?

▶ Q. Do sharp transitions help training/feature learning in practice?

20 / 20

Conclusion and remarks

Takeaway

▶ The additive model hypothesis is true at least for orthogonal
two-layer networks.

▶ Learning different directions/features with vastly different signal
strength without deflation/reinitialization is possible.

▶ Sharp transitions help preserve the randomness from the
initialization and prevent model collapse.

Remarks on sharp transitions

▶ Higher-order terms ⇒ sharp transitions.
▶ Examples of sharp transitions.

▶ L(w) = (w∗ − w)2, L(w) = (w∗ − w2)2. X
▶ L(w) = (w∗ − w1w2w3)

2, L(w) = (w∗ − wk)2, k ≥ 3. ✓

▶ Q. Do deep architectures always lead to sharp transitions?

▶ Q. Do sharp transitions help training/feature learning in practice?

20 / 20

Conclusion and remarks

Takeaway

▶ The additive model hypothesis is true at least for orthogonal
two-layer networks.

▶ Learning different directions/features with vastly different signal
strength without deflation/reinitialization is possible.

▶ Sharp transitions help preserve the randomness from the
initialization and prevent model collapse.

Remarks on sharp transitions

▶ Higher-order terms ⇒ sharp transitions.
▶ Examples of sharp transitions.

▶ L(w) = (w∗ − w)2, L(w) = (w∗ − w2)2. X
▶ L(w) = (w∗ − w1w2w3)

2, L(w) = (w∗ − wk)2, k ≥ 3. ✓

▶ Q. Do deep architectures always lead to sharp transitions?

▶ Q. Do sharp transitions help training/feature learning in practice?

20 / 20

Conclusion and remarks

Takeaway

▶ The additive model hypothesis is true at least for orthogonal
two-layer networks.

▶ Learning different directions/features with vastly different signal
strength without deflation/reinitialization is possible.

▶ Sharp transitions help preserve the randomness from the
initialization and prevent model collapse.

Remarks on sharp transitions

▶ Higher-order terms ⇒ sharp transitions.
▶ Examples of sharp transitions.

▶ L(w) = (w∗ − w)2, L(w) = (w∗ − w2)2. X
▶ L(w) = (w∗ − w1w2w3)

2, L(w) = (w∗ − wk)2, k ≥ 3. ✓

▶ Q. Do deep architectures always lead to sharp transitions?

▶ Q. Do sharp transitions help training/feature learning in practice?

20 / 20

