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Task

Target function (two-layer orthogonal networks).
fu(x) = 21 apo(wj - x), x ~N(0,14),

where a, > 0, {wp,}, C S9! are the unknown ground truth
weights and o is the activation/link function.

» (orthogonal weights) {w} } is orthonormal.
> (large width) 1 < P < d°.
>

(large condition number)  := max, ap/ minp ap > 1.
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Task
Target function (two-layer orthogonal networks).

f(x) = 5 1 3po(wp-x), x ~N(0,1g),
where a, > 0, {wp,}, C S9! are the unknown ground truth
weights and o is the activation/link function.
» (orthogonal weights) {w} } is orthonormal.
> (large width) 1 < P < d°.
>

(large condition number)  := max, ap/ minp ap > 1.

Q. Can we learn this function class using a two-layer network and
vanilla online SGD?

» poly(d, P, k) sample/iteration complexity;
» O(P) learner neurons;
» No strange modifications to the algorithm.
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Motivations from the empirical side

» Neural scaling laws [Kaplan et al. 20|, [Hoffmann et al. 22]
Observed in practice that increasing compute and data leads to
smooth power-law decay in the loss.

» Emergence [\Wei et al. 22|, [Ganguli et al. 22]

Learning of individual tasks/skills exhibits sharp transitions.

» Q. How to reconcile these two observations?
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Motivations from the empirical side
Q. How to reconcile the emergent behavior in skill acquisition and
the smooth power-law decay in the loss?

Hypothesis (Additive Model [Michaud et al. 24], [Nam et al. 24])

» Cumulative objective can be decomposed into a large number of
distinct “skills”, learning of each exhibits sharp transitions.

» Combination of numerous emergent learning curves at different
time scales results in a power-law rate.

' This work: theoretical justification of
Cumulative loss the additive model hypothesis in SGD

%\: learning of the target function:
Loss at p-th task\\ f _\P *
P «(x) =2 p—1 apo(wy, - x),

compute . —
P with a, o< p B.
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Motivations from the theory side
Theorem ([Li, Ma, Zhang, 2020])

( Orthogonal well-conditioned teacher)
fi(x) = Zp_l b \(ep, x)| with condition number

maxp a,/ min, a;, =
> (extremely overparameterized, 2-homogeneous student)
f(x) = pq [|wk|| ReLU(wy - x) with width m = e" poly d.

= Online SGD can efficiently minimize L and recovery {(aj,, ep)}p-
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Motivations from the theory side
Theorem ([Li, Ma, Zhang, 2020])

» (Orthogonal, well-conditioned teacher)
f(x) = Zzzl a, |(ep, x)| with condition number
maxp a,/ min, a; = K.
» (extremely overparameterized, 2-homogeneous student)
f(x) = pq [|wk|| ReLU(wy - x) with width m = e" poly d.

= Online SGD can efficiently minimize L and recovery {(aj,, ep)}p-

(Motivation: separating kernel methods and neural networks.)
Proof strategy.

» Convert the task to orthogonal tensor decomposition using
Hermite analysis.

» Gradient descent mimics the tensor power method.

» 4th order orthogonal tensor decomposition can be efficiently
solved by the tensor power method (with deflation).
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The e” factor

Why does [LMZ20] need m = €" poly d neurons?
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The e” factor
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» = Need e” poly d neurons to cover all directions.
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The e” factor

Why removing the e factor (without using manual deflation
or reinitialization) is meaningful?
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The e” factor

Why removing the e factor (without using manual deflation
or reinitialization) is meaningful?

In practice:
» Can not expect the condition number to be small;

» Despite being overparameterized, the number of neurons in each
layer is not extremely large;

» Practitioners only use variants of SGD with no manual deflation.

A conceptual question:
Can we efficiently learn all directions in parallel when the con-
dition number is large?
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A brief summary of our discussion so far
» Task. Learning orthogonal shallow networks

f(x) =Y p_y apo (W} - X).

» Algorithm. Online SGD with no manual deflation/reinitialization.
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A brief summary of our discussion so far

» Task. Learning orthogonal shallow networks

f(x) = Yy apo (W} - x).

» Algorithm. Online SGD with no manual deflation/reinitialization.
> Motivation (Additive model hypothesis)
> Does the learning of each direction a,w, has a sharp transition?
> Yes, when IE(o) > 2. [Ben Arous, Gheissari, Jagannath, 2021]
» Can they lead to a non-trivial power law decay in the loss?
» Yes. (This work)
» Motivation (Learning when the condition number > 1)
» [s it necessary to have e" neurons?
» No. O(Plog P) neurons suffice. (This work)
» How to avoid the large directions attracting all the neurons?

> Rely on the sharp transitions/emergence. (This work)
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Emergence in single-index models

Definition (Single-index models)
A single-index model is a two-layer neural network with one neuron:

*

f(x) =o(w* - x), VxeR

where w* € S~ is the ground truth direction, and o : R — R the
link function.

» A long history, dated at least to [Ichimura, 1993].
» Have different names: generalized linear models, learning a single
neuron, phase retrieval...

Q. Sample complexity of learning a single-index model when

x ~N(0,14)?

8/20



Information exponent [Ben Arous, Gheissari, Jagannath, 2021]

Hermite expansion. o(z) = > "2, §;h;, where h; is the i-th
(normalized) Hermite polynomial and &; = E,xr0,1)[0(2)hi(2)].

> Fact. E [hi(v-x)hj(w-x)] = 1{i = j} (v,w)".

Definition (Information exponent)

Suppose 0 = ) 2, §;hj. The information exponent of o is

IE(c) :==min{i >0 : §; #0}.
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Information exponent [Ben Arous, Gheissari, Jagannath, 2021]
Hermite expansion. o(z) = > 72, §;h;j, where h; is the i-th
(normalized) Hermite polynomial and &; = E,xr(0,1)[0(2)hi(2)].

> Fact. E[hi(v-x)hj(w-x)] = 1{i = j} (v,w)".

Definition (Information exponent)

Suppose 0 = Y2, §;hj. The information exponent of o is

IE(c) :=min{i >0 : 5; #0}.

i,j=IE
= G7E[hi(w" - x)hi(w - x)]
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+Z&,a,-1xa[h,(w x)hj(w - x)]
i#j
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Information exponent [Ben Arous, Gheissari, Jagannath, 2021]
Hermite expansion. o(z) = > 72, §;h;j, where h; is the i-th
(normalized) Hermite polynomial and &; = E,xr(0,1)[0(2)hi(2)].

> Fact. E [hi(v-x)hj(w-x)] = 1{i = j} (v,w)".

Definition (Information exponent)

Suppose 0 = Y2, §;hj. The information exponent of o is

IE(c) :=min{i >0 : 5; #0}.

Efo(w. x)o(w - x)] = Y 667 [hi(w" - x)hi(w - x)]
ij=IE

o0
= 6% (w*, w)'® + Z 52 (w*, w)'
~———

the dominating term i=IE+1

—l—Zé\';é\‘j]E[h;

(w" -
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Information exponent [Ben Arous, Gheissari, Jagannath, 2021]

Theorem ([BAGJ21])

Suppose IE(o) = k and our algorithm is online (spherical) SGD
with step size n = ©(1/d*/?V1). Then, we can recover w* with
> O(1/n) = O(d) iterations/samples if k = 1;

» O(logd/n) = O(dlog d) iterations/samples if k = 2;

> O(d*/>~1/n) = O(d*~1) iterations/samples if k > 3.
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Information exponent [Ben Arous, Gheissari, Jagannath, 2021]

Theorem ([BAGJ21])
Suppose IE(o) = k and our algorithm is online (spherical) SGD
with step size n = ©(1/d*/?V1). Then, we can recover w* with
> O(1/n) = O(d) iterations/samples if k = 1;
» O(logd/n) = O(dlog d) iterations/samples if k = 2;
> O(d*/>~1/n) = O(d*~1) iterations/samples if k > 3.

Emergent behavior:

1 When k = 1E > 3,
e > From d-1/2 to d-1/2+9 O(d*1) steps;
> From d= /219 to 1 —&: o(d*~!) steps.

Wy R
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[BAGJ21] Proof sketch

(Assume IE = 4 for simplicity)
Dynamics of m; := (w*, w;)?:

mo ~ 1/0’,

mes1 = me +na(l — me)m? 4+ n?Cea
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0.0
1
0 100 200 300 400 500 600
time

» (Need n = O(1/d?) to absorb the noise into the signal)

» Continuous-time counterpart:

my = a(1 — my)m? =~ am?
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[BAGJ21] Proof sketch

m=a(l-m)m?

1.0

== Teritical = (@Xo) ™% i[_
(Assume IE = 4 for Simplicit)’) 0.8 i
. 1 Y
Dynamics of m; := (w*, w;)*: -
£

mo = 1/d’ 0.4
2 2 0.2

Met1 & me +na(l — me)mi +0°Ceyn .

0.0 I

0 100 200 300 400 500 600
time

> (Need = O(1/d?) to absorb the noise into the signal)

» Continuous-time counterpart:

1
my = a(l — m)m? ~ am? = N ———
t ( t)m; t me 1/mo — at

» = sharp transition (faster than exponential) around
time 1/(amy) ~ d/a.
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The idealized dynamics

Our target function.

f(x) = Z 13po(wh-x), x~N(0,14),

(1) P < d; (2) {w}}p orthonormal; (3) o even;

(4) For simplicity, assume IE(o) = 4.
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The idealized dynamics

Our target function.
f(x) = Z 13po(wh-x), x~N(0,14),

(1) P < d; (2) {w}}p orthonormal; (3) o even;
(4) For simplicity, assume IE(o) = 4.

» If we assume everything is decoupled ...
»> One v, for one apo(w;
» = Direction a,o(w}, - x) gets learned around time

A
Tp:= (nap<wp,vp> > .

» = Loss satisfies

P P .
%Zaf,ﬂ{t< Tp}:Zaf,]l{t< (ﬁ3p<W;*3an>2> }
p=1 p=1

x) and no interaction between them.
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From the idealized dynamics to the scaling law

P P 1
E(t)%Za,%]l{t< Tp}:Zai]l{t< (173,,<w7;7 Vp>2) }
p=1 p=1

Assumption (power law signal)

ap = p~—? for some constant 5 > 1/2.
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From the idealized dynamics to the scaling law

P P .
ﬁ(t)%Zaiﬂ{t< Tp}:Zaf,ll{t< <nap<w;§, 0p>2> }
p=1 p=1

Assumption (power law signal)

ap = p~—? for some constant 5 > 1/2.

s2Pds =

P P 0o )
£(Tp)wZa§:Zq_2ﬁ %Zq_mm/
p
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From the idealized dynamics to the scaling law

P P .
E(t)zZaiﬂ{t< Tp}:ZaIZJ]l{t< (nap<wl’;,vp>2) }
p=1 p=1

Assumption (power law signal)

ap = p~? for some constant 3 > 1/2.

P P 0o

) 1-2b
~ 2 _ —28 . 28 —28 4. _ P
L(TP)Nzaq_Zq qu N/p s ds—2b_1.
q=p q=p q=p
Formal change-of-variables:
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Assumption (power law signal)

ap = p~? for some constant 3 > 1/2.

P P o] 0o
- - - P
LT)=> =Y ¢ =) qzﬁz/ 526d522bf1'
a=p q=p q=p P

Formal change-of-variables:

Tp = (nP’B (W}, ‘_’p>2>_1

1/8
=t & p= (nt<w:, |7p>2> R~ (nt/d)l/B

1

= LD~ g

(nt/d)(lf%’)/ﬁ
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From the idealized to the actual dynamics

A\
aw}

> Issue of the existing analyses.

» Larger directions may attract too many
neurons.
» Need e” neurons to cover all directions.
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From the idealized to the actual dynamics

A\
aw}

> Issue of the existing analyses.

» Larger directions may attract too many
neurons.

» Need e” neurons to cover all directions.

Claim 1. If all irrelevant coordinates \7,§7p are O(1/d), then

the dynamics can be decoupled. (incoherence = decoupled
dynamics)

Claim 2. Sharp transitions = small irrelevant coordinates.
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Proof intuition

> At first, most neurons get attracted by direction a;wj.
» (Decoupled dynamics = partial progress can be preserved.)

*
awig

15/20



Proof intuition
» Sharp transitions = \73%1 = 5(1/d) until t &~ Teitical-
» vy fits ayw] around time T1 < Teitical and kills the signal.
> = \73%1 stays small throughout training.
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Proof intuition

» The remaining neurons get attracted by a,ws3.

aw¥
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Proof intuition
> vy fits ayws3.

» The other neurons stay close to the initialization (and preserve

the partial progress).

*
aw;
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Main results

Theorem (Optimization)

» Teacher network: f.(x) = 25:1 apo(wj, - x), where P < d€, {w}},
orthonormal, o even and J :=1E(c) > 4.
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Main results
Theorem (Optimization)

» Teacher network: f,(x) = 25:1 apo(wy - x), where P < d°, {w}},
orthonormal, o even and J :=IE(0) > 4.
» Student network: f(x) =", vill? o (v - x) with m = O(P log P).
> Algorithm: online SGD with step size 1 = 1/(d?/? poly(P, k)).
» Conclusion: there exists an injective ¢ : [P] — [m] such that:
(a) Unused neurons. ||vi|| is small if k ¢ o([P]).
(b) Emergence. Vp € [P], v,(,) converges to and fits a,w},
at time (14 o(1)) T,, where T, :=1/(8nap (V,(p), w;‘;>J72).

Corollary (Scaling laws)

ap o< p~? for B > 1/2. Width-m learner (maybe under-parameterized).
Online SGD with step size 1) and t iterations/samples.

1-28
E(m, t) ~ mi—28 (ntdlfJ/2) B
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two-layer networks.
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» The additive model hypothesis is true at least for orthogonal
two-layer networks.

» Learning different directions/features with vastly different signal
strength without deflation/reinitialization is possible.

» Sharp transitions help preserve the randomness from the
initialization and prevent model collapse.

Remarks on sharp transitions

» Higher-order terms = sharp transitions.
» Examples of sharp transitions.
> L(w) = (wi —w)?, L(w) = (wi —w?)2 X
> L(w) = (we — winows)?, L(w) = (we — wk)? k > 3.

» Q. Do deep architectures always lead to sharp transitions?
» Q. Do sharp transitions help training/feature learning in practice?
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