Emergence and scaling laws for SGD learning of shallow neural networks.

Yunwei Ren*1. Eshaan Nichani*1. Denny Wu²³. Jason D. Lee¹

¹Princeton University ²New York University ³Flatiron Institute

April 22, 2025

Task

Target function (two-layer orthogonal networks).

$$f_*(\mathbf{x}) = \sum_{p=1}^P a_p \sigma(\mathbf{w}_p^* \cdot \mathbf{x}), \quad \mathbf{x} \sim \mathcal{N}(0, \mathbf{I}_d),$$

where $a_p > 0$, $\{\mathbf{w}_p^*\}_p \subset \mathbb{S}^{d-1}$ are the unknown ground truth weights and σ is the activation/link function.

- (orthogonal weights) $\{\boldsymbol{w}_k^*\}_k$ is orthonormal.
- ▶ (large width) $1 \ll P \ll d^c$.
- (large condition number) $\kappa := \max_{p} a_{p} / \min_{p} a_{p} \gg 1$.

Task

Target function (two-layer orthogonal networks).

$$f_*(\mathbf{x}) = \sum_{p=1}^P a_p \sigma(\mathbf{w}_p^* \cdot \mathbf{x}), \quad \mathbf{x} \sim \mathcal{N}(0, \mathbf{I}_d),$$

where $a_p > 0$, $\{\mathbf{w}_p^*\}_p \subset \mathbb{S}^{d-1}$ are the unknown ground truth weights and σ is the activation/link function.

- (orthogonal weights) $\{\boldsymbol{w}_k^*\}_k$ is orthonormal.
- ▶ (large width) $1 \ll P \ll d^c$.
- (large condition number) $\kappa := \max_p a_p / \min_p a_p \gg 1$.

Q. Can we learn this function class using a two-layer network and vanilla online SGD?

- ▶ $poly(d, P, \kappa)$ sample/iteration complexity;
- $ightharpoonup \tilde{O}(P)$ learner neurons;
- No strange modifications to the algorithm.

- Neural scaling laws [Kaplan et al. 20], [Hoffmann et al. 22] Observed in practice that increasing compute and data leads to smooth power-law decay in the loss.
- ► Emergence [Wei et al. 22], [Ganguli et al. 22] Learning of individual tasks/skills exhibits sharp transitions.
- ▶ **Q.** How to reconcile these two observations?

Q. How to reconcile the emergent behavior in skill acquisition and the smooth power-law decay in the loss?

Hypothesis (Additive Model [Michaud et al. 24], [Nam et al. 24])

- Cumulative objective can be decomposed into a large number of distinct "skills", learning of each exhibits sharp transitions.
- ► Combination of numerous emergent learning curves at different time scales results in a power-law rate.

Q. How to reconcile the emergent behavior in skill acquisition and the smooth power-law decay in the loss?

Hypothesis (Additive Model [Michaud et al. 24], [Nam et al. 24])

- Cumulative objective can be decomposed into a large number of distinct "skills", learning of each exhibits sharp transitions.
- Combination of numerous emergent learning curves at different time scales results in a power-law rate.

Q. How to reconcile the emergent behavior in skill acquisition and the smooth power-law decay in the loss?

Hypothesis (Additive Model [Michaud et al. 24], [Nam et al. 24])

- Cumulative objective can be decomposed into a large number of distinct "skills", learning of each exhibits sharp transitions.
- Combination of numerous emergent learning curves at different time scales results in a power-law rate.

Q. How to reconcile the emergent behavior in skill acquisition and the smooth power-law decay in the loss?

Hypothesis (Additive Model [Michaud et al. 24], [Nam et al. 24])

- Cumulative objective can be decomposed into a large number of distinct "skills", learning of each exhibits sharp transitions.
- Combination of numerous emergent learning curves at different time scales results in a power-law rate.

This work: theoretical justification of the additive model hypothesis in SGD learning of the target function:

$$f_*(\mathbf{x}) = \sum_{p=1}^P a_p \sigma(\mathbf{w}_p^* \cdot \mathbf{x}),$$

with $a_p \propto p^{-\beta}$.

Motivations from the theory side

Theorem ([Li, Ma, Zhang, 2020])

- (Orthogonal, well-conditioned teacher) $f_*(\mathbf{x}) = \sum_{p=1}^d a_p^* |\langle \mathbf{e}_p, \mathbf{x} \rangle| \text{ with condition number } \max_p a_p^* / \min_p a_p^* = \kappa.$
- (extremely overparameterized, 2-homogeneous student) $f(\mathbf{x}) = \sum_{k=1}^{m} \|\mathbf{w}_{k}\| \operatorname{ReLU}(\mathbf{w}_{k} \cdot \mathbf{x}) \text{ with width } m = \mathbf{e}^{\kappa} \operatorname{poly} d.$
- \Rightarrow Online SGD can efficiently minimize \mathcal{L} and recovery $\{(a_p^*, \boldsymbol{e}_p)\}_p$.

Motivations from the theory side

Theorem ([Li, Ma, Zhang, 2020])

- (Orthogonal, well-conditioned teacher) $f_*(\mathbf{x}) = \sum_{p=1}^d a_p^* |\langle \mathbf{e}_p, \mathbf{x} \rangle| \text{ with condition number } \max_p a_p^* / \min_p a_p^* = \kappa.$
- (extremely overparameterized, 2-homogeneous student) $f(\mathbf{x}) = \sum_{k=1}^{m} \|\mathbf{w}_k\| \operatorname{ReLU}(\mathbf{w}_k \cdot \mathbf{x})$ with width $m = \mathbf{e}^{\kappa}$ poly d.
- \Rightarrow Online SGD can efficiently minimize $\mathcal L$ and recovery $\{(a_p^*, \boldsymbol e_p)\}_p$.

(Motivation: separating kernel methods and neural networks.)

Proof strategy.

- Convert the task to orthogonal tensor decomposition using Hermite analysis.
- Gradient descent mimics the tensor power method.
- 4th order orthogonal tensor decomposition can be efficiently solved by the tensor power method (with deflation).

Why does [LMZ20] need $m = e^{\kappa}$ poly d neurons?

Why does [LMZ20] need $m = e^{\kappa}$ poly d neurons?

In tensor power method (4th order, without deflation):

- ▶ Need $a_p \bar{v}_p^2 > \max_{q \neq p} a_q \bar{v}_q^2$ for \mathbf{v} to converge to \mathbf{w}_p^* .
- ightharpoonup ightharpoonup Need e^{κ} poly d neurons to cover all directions.

Why removing the e^{κ} factor (without using manual deflation or reinitialization) is meaningful?

Why removing the e^{κ} factor (without using manual deflation or reinitialization) is meaningful?

- Can <u>not</u> expect the condition number to be small;
- Despite being overparameterized, the number of neurons in each layer is <u>not</u> extremely large;
- Practitioners only use variants of SGD with <u>no</u> manual deflation.

Why removing the e^{κ} factor (without using manual deflation or reinitialization) is meaningful?

- Can <u>not</u> expect the condition number to be small;
- Despite being overparameterized, the number of neurons in each layer is <u>not</u> extremely large;
- Practitioners only use variants of SGD with no manual deflation.

Why removing the e^{κ} factor (without using manual deflation or reinitialization) is meaningful?

- Can <u>not</u> expect the condition number to be small;
- Despite being overparameterized, the number of neurons in each layer is <u>not</u> extremely large;
- Practitioners only use variants of SGD with no manual deflation.

Why removing the e^{κ} factor (without using manual deflation or reinitialization) is meaningful?

- Can <u>not</u> expect the condition number to be small;
- Despite being overparameterized, the number of neurons in each layer is <u>not</u> extremely large;
- Practitioners only use variants of SGD with no manual deflation.

Why removing the e^{κ} factor (without using manual deflation or reinitialization) is meaningful?

In practice:

- Can <u>not</u> expect the condition number to be small;
- Despite being overparameterized, the number of neurons in each layer is <u>not</u> extremely large;
- Practitioners only use variants of SGD with no manual deflation.

A conceptual question:

Can we efficiently learn all directions in parallel when the condition number is large?

► Task. Learning orthogonal shallow networks

$$f_*(\mathbf{x}) = \sum_{p=1}^P a_p \sigma(\mathbf{w}_p^* \cdot \mathbf{x}).$$

▶ **Algorithm.** Online SGD with no manual deflation/reinitialization.

► Task. Learning orthogonal shallow networks

$$f_*(\mathbf{x}) = \sum_{p=1}^P a_p \sigma(\mathbf{w}_p^* \cdot \mathbf{x}).$$

- ▶ **Algorithm.** Online SGD with no manual deflation/reinitialization.
- ► Motivation (Additive model hypothesis)
 - ▶ Does the learning of each direction $a_p \mathbf{w}_p^*$ has a sharp transition?
 - Can they lead to a non-trivial power law decay in the loss?

► Task. Learning orthogonal shallow networks

$$f_*(\mathbf{x}) = \sum_{p=1}^P a_p \sigma(\mathbf{w}_p^* \cdot \mathbf{x}).$$

- ▶ **Algorithm.** Online SGD with no manual deflation/reinitialization.
- ► Motivation (Additive model hypothesis)
 - ▶ Does the learning of each direction $a_p \mathbf{w}_p^*$ has a sharp transition?
 - Can they lead to a non-trivial power law decay in the loss?
- ▶ Motivation (Learning when the condition number $\kappa \gg 1$)
 - ls it necessary to have e^{κ} neurons?
 - ▶ How to avoid the large directions attracting all the neurons?

► Task. Learning orthogonal shallow networks

$$f_*(\mathbf{x}) = \sum_{p=1}^P a_p \sigma(\mathbf{w}_p^* \cdot \mathbf{x}).$$

- ▶ **Algorithm.** Online SGD with no manual deflation/reinitialization.
- ► Motivation (Additive model hypothesis)
 - ▶ Does the learning of each direction $a_p \mathbf{w}_p^*$ has a sharp transition?
 - **Yes**, when $IE(\sigma) > 2$. [Ben Arous, Gheissari, Jagannath, 2021]
 - Can they lead to a non-trivial power law decay in the loss?
 - Yes. (This work)
- ▶ Motivation (Learning when the condition number $\kappa \gg 1$)
 - ▶ Is it necessary to have e^{κ} neurons?
 - No. $O(P \log P)$ neurons suffice. (This work)
 - How to avoid the large directions attracting all the neurons?
 - Rely on the sharp transitions/emergence. (This work)

Emergence in single-index models

Definition (Single-index models)

A single-index model is a two-layer neural network with one neuron:

$$f_*(\mathbf{x}) = \sigma(\mathbf{w}^* \cdot \mathbf{x}), \quad \forall \mathbf{x} \in \mathbb{R}^d,$$

where $\mathbf{w}^* \in \mathbb{S}^{d-1}$ is the ground truth direction, and $\sigma : \mathbb{R} \to \mathbb{R}$ the link function.

- ▶ A long history, dated at least to [Ichimura, 1993].
- ► Have different names: generalized linear models, learning a single neuron, phase retrieval...
 - **Q.** Sample complexity of learning a single-index model when $\mathbf{x} \sim \mathcal{N}(0, \mathbf{I}_d)$?

Hermite expansion. $\sigma(z) = \sum_{i=0}^{\infty} \hat{\sigma}_i h_i$, where h_i is the *i*-th (normalized) Hermite polynomial and $\hat{\sigma}_i = \mathbb{E}_{z \sim \mathcal{N}(0,1)}[\sigma(z)h_i(z)]$.

► Fact. $\mathbb{E}_{\mathbf{x}}[h_i(\mathbf{v} \cdot \mathbf{x})h_j(\mathbf{w} \cdot \mathbf{x})] = \mathbb{1}\{i = j\} \langle \mathbf{v}, \mathbf{w} \rangle^i$.

Definition (Information exponent)

$$\mathrm{IE}(\sigma) := \min \left\{ i > 0 \, : \, \hat{\sigma}_i \neq 0 \right\}.$$

Hermite expansion. $\sigma(z) = \sum_{i=0}^{\infty} \hat{\sigma}_i h_i$, where h_i is the *i*-th (normalized) Hermite polynomial and $\hat{\sigma}_i = \mathbb{E}_{z \sim \mathcal{N}(0,1)}[\sigma(z)h_i(z)]$.

► Fact. $\mathbb{E}_{\mathbf{x}}[h_i(\mathbf{v} \cdot \mathbf{x})h_j(\mathbf{w} \cdot \mathbf{x})] = \mathbb{1}\{i = j\} \langle \mathbf{v}, \mathbf{w} \rangle^i$.

Definition (Information exponent)

$$IE(\sigma) := \min \left\{ i > 0 : \hat{\sigma}_i \neq 0 \right\}.$$

$$\mathbb{E}_{\mathbf{x}}[\sigma(\mathbf{w}_* \cdot \mathbf{x})\sigma(\mathbf{w} \cdot \mathbf{x})] = \sum_{i,j=1}^{\infty} \hat{\sigma}_i \hat{\sigma}_j \mathbb{E}_{\mathbf{x}}[h_i(\mathbf{w}^* \cdot \mathbf{x})h_j(\mathbf{w} \cdot \mathbf{x})]$$

Hermite expansion. $\sigma(z) = \sum_{i=0}^{\infty} \hat{\sigma}_i h_i$, where h_i is the *i*-th (normalized) Hermite polynomial and $\hat{\sigma}_i = \mathbb{E}_{z \sim \mathcal{N}(0,1)}[\sigma(z)h_i(z)]$.

► Fact. $\mathbb{E}_{\mathbf{x}}[h_i(\mathbf{v} \cdot \mathbf{x})h_j(\mathbf{w} \cdot \mathbf{x})] = \mathbb{1}\{i = j\} \langle \mathbf{v}, \mathbf{w} \rangle^i$.

Definition (Information exponent)

$$IE(\sigma) := \min \left\{ i > 0 : \hat{\sigma}_i \neq 0 \right\}.$$

$$\mathbb{E}_{\mathbf{x}}[\sigma(\mathbf{w}_* \cdot \mathbf{x})\sigma(\mathbf{w} \cdot \mathbf{x})] = \sum_{i,j=\mathrm{IE}}^{\infty} \hat{\sigma}_i \hat{\sigma}_j \mathbb{E}_{\mathbf{x}}[h_i(\mathbf{w}^* \cdot \mathbf{x})h_j(\mathbf{w} \cdot \mathbf{x})]$$

$$= \sum_{i=\mathrm{IE}}^{\infty} \hat{\sigma}_i^2 \mathbb{E}_{\mathbf{x}}[h_i(\mathbf{w}^* \cdot \mathbf{x})h_i(\mathbf{w} \cdot \mathbf{x})]$$

$$+ \sum_{i \neq j} \hat{\sigma}_i \hat{\sigma}_j \mathbb{E}_{\mathbf{x}}[h_i(\mathbf{w}^* \cdot \mathbf{x})h_j(\mathbf{w} \cdot \mathbf{x})]$$

Hermite expansion. $\sigma(z) = \sum_{i=0}^{\infty} \hat{\sigma}_i h_i$, where h_i is the *i*-th (normalized) Hermite polynomial and $\hat{\sigma}_i = \mathbb{E}_{z \sim \mathcal{N}(0,1)}[\sigma(z)h_i(z)]$.

► Fact. $\mathbb{E}_{\mathbf{x}}[h_i(\mathbf{v} \cdot \mathbf{x})h_j(\mathbf{w} \cdot \mathbf{x})] = \mathbb{1}\{i = j\} \langle \mathbf{v}, \mathbf{w} \rangle^i$.

Definition (Information exponent)

$$IE(\sigma) := \min \left\{ i > 0 : \hat{\sigma}_i \neq 0 \right\}.$$

$$\mathbb{E}\left[\sigma(\boldsymbol{w}_* \cdot \boldsymbol{x})\sigma(\boldsymbol{w} \cdot \boldsymbol{x})\right] = \sum_{i,j=\mathrm{IE}}^{\infty} \hat{\sigma}_i \hat{\sigma}_j \, \mathbb{E}\left[h_i(\boldsymbol{w}^* \cdot \boldsymbol{x})h_j(\boldsymbol{w} \cdot \boldsymbol{x})\right] \\
= \underbrace{\hat{\sigma}_{\mathrm{IE}}^2 \, \langle \boldsymbol{w}^*, \boldsymbol{w} \rangle^{\mathrm{IE}}}_{\text{the dominating term}} + \sum_{i=\mathrm{IE}+1}^{\infty} \hat{\sigma}_i^2 \, \langle \boldsymbol{w}^*, \boldsymbol{w} \rangle^i \\
+ \underbrace{\sum_{i \neq j} \hat{\sigma}_i \hat{\sigma}_j \, \mathbb{E}\left[h_i(\boldsymbol{w}^* \cdot \boldsymbol{x})h_j(\boldsymbol{w} \cdot \boldsymbol{x})\right]}_{\mathbf{x}}$$

Theorem ([BAGJ21])

Suppose $\text{IE}(\sigma) = k$ and our algorithm is online (spherical) SGD with step size $\eta = \tilde{\Theta}(1/d^{k/2\vee 1})$. Then, we can recover \mathbf{w}^* with

- $ightharpoonup O(1/\eta) = \tilde{O}(d)$ iterations/samples if k = 1;
- $ightharpoonup O(\log d/\eta) = \tilde{O}(d\log d)$ iterations/samples if k=2;
- $O(d^{k/2-1}/\eta) = \tilde{O}(d^{k-1})$ iterations/samples if $k \ge 3$.

Theorem ([BAGJ21])

Suppose $\text{IE}(\sigma) = k$ and our algorithm is online (spherical) SGD with step size $\eta = \tilde{\Theta}(1/d^{k/2\vee 1})$. Then, we can recover \mathbf{w}^* with

- $O(1/\eta) = \tilde{O}(d)$ iterations/samples if k = 1;
- $O(\log d/\eta) = \tilde{O}(d \log d)$ iterations/samples if k = 2;
- $O(d^{k/2-1}/\eta) = \tilde{O}(d^{k-1})$ iterations/samples if $k \ge 3$.

Emergent behavior:

When k = IE > 3,

- From $d^{-1/2}$ to $d^{-1/2+\delta}$: $\tilde{\Theta}(d^{k-1})$ steps;
- ▶ From $d^{-1/2+\delta}$ to $1-\varepsilon$: $o(d^{k-1})$ steps.

(Assume IE = 4 for simplicity) Dynamics of
$$m_t := \langle {m w}^*, {m w}_t \rangle^2$$
:
$$m_0 \approx 1/d,$$

$$m_{t+1} \approx m_t + \eta {\it a} (1-m_t) m_t^2 + \eta^2 \zeta_{t+1}$$

(Assume IE = 4 for simplicity) Dynamics of
$$m_t := \langle {m w}^*, {m w}_t \rangle^2$$
: $m_0 \approx 1/d,$ $m_{t+1} \approx m_t + \eta a (1-m_t) m_t^2 + \eta^2 \zeta_{t+1}$

lackbrack (Need $\eta = ilde{O}(1/d^2)$ to absorb the noise into the signal)

(Assume IE = 4 for simplicity) Dynamics of
$$m_t := \langle \boldsymbol{w}^*, \boldsymbol{w}_t \rangle^2$$
:
$$m_0 \approx 1/d,$$

$$m_{t+1} \approx m_t + \eta a (1-m_t) m_t^2 + \eta^2 \zeta_{t+1}$$

- lackbox (Need $\eta = ilde{O}(1/d^2)$ to absorb the noise into the signal)
- Continuous-time counterpart:

$$\dot{m}_t = a(1-m_t)m_t^2 pprox am_t^2$$

(Assume IE = 4 for simplicity)
Dynamics of
$$m_t := \langle {m w}^*, {m w}_t \rangle^2$$
: $m_0 \approx 1/d,$ $m_{t+1} \approx m_t + \eta a (1-m_t) m_t^2 + \eta^2 \zeta_{t+1}$

- lacktriangle (Need $\eta = ilde{O}(1/d^2)$ to absorb the noise into the signal)
- Continuous-time counterpart:

$$\dot{m}_t = a(1-m_t)m_t^2 pprox am_t^2 \quad \Rightarrow \quad m_t pprox rac{1}{1/m_0 - at}$$

(Assume IE = 4 for simplicity)
 Dynamics of
$$m_t := \langle \boldsymbol{w}^*, \boldsymbol{w}_t \rangle^2$$
:
 $m_0 \approx 1/d,$
 $m_{t+1} \approx m_t + \eta a (1-m_t) m_t^2 + \eta^2 \zeta_{t+1}$

- lacktriangle (Need $\eta = ilde{O}(1/d^2)$ to absorb the noise into the signal)
- ► Continuous-time counterpart:

$$\dot{m}_t = a(1-m_t)m_t^2 \approx am_t^2 \quad \Rightarrow \quad m_t \approx \frac{1}{1/m_0 - at}$$

▶ \Rightarrow sharp transition (faster than exponential) around time $1/(am_0) \approx d/a$.

The idealized dynamics

Our target function.

$$f_*(\mathbf{x}) = \sum_{p=1}^P a_p \sigma(\mathbf{w}_p^* \cdot \mathbf{x}), \quad \mathbf{x} \sim \mathcal{N}(0, \mathbf{I}_d),$$

- (1) $P \ll d^c$; (2) $\{ {m w}_p^* \}_p$ orthonormal; (3) σ even;
- (4) For simplicity, assume $IE(\sigma) = 4$.

The idealized dynamics

Our target function.

$$f_*(\mathbf{x}) = \sum_{p=1}^P a_p \sigma(\mathbf{w}_p^* \cdot \mathbf{x}), \quad \mathbf{x} \sim \mathcal{N}(0, \mathbf{I}_d),$$

- (1) $P \ll d^c$; (2) $\{\boldsymbol{w}_p^*\}_p$ orthonormal; (3) σ even;
- (4) For simplicity, assume $IE(\sigma) = 4$.
- If we assume everything is decoupled ...
 - One \mathbf{v}_p for one $a_p \sigma(\mathbf{w}_p^* \cdot \mathbf{x})$ and no interaction between them.

The idealized dynamics

Our target function.

$$f_*(\mathbf{x}) = \sum_{p=1}^P a_p \sigma(\mathbf{w}_p^* \cdot \mathbf{x}), \quad \mathbf{x} \sim \mathcal{N}(0, \mathbf{I}_d),$$

- (1) $P \ll d^c$; (2) $\{\boldsymbol{w}_p^*\}_p$ orthonormal; (3) σ even;
- (4) For simplicity, assume $IE(\sigma) = 4$.
- If we assume everything is decoupled ...
 - ▶ One \mathbf{v}_p for one $a_p \sigma(\mathbf{w}_p^* \cdot \mathbf{x})$ and no interaction between them.
- ightharpoonup \Rightarrow Direction $a_p \sigma(\mathbf{w}_p^* \cdot \mathbf{x})$ gets learned around time

$$T_p := \left(\eta a_p \left\langle \mathbf{w}_p^*, \bar{\mathbf{v}}_p \right\rangle^2 \right)^{-1}.$$

The idealized dynamics

Our target function.

$$f_*(\mathbf{x}) = \sum_{p=1}^P a_p \sigma(\mathbf{w}_p^* \cdot \mathbf{x}), \quad \mathbf{x} \sim \mathcal{N}(0, \mathbf{I}_d),$$

- (1) $P \ll d^c$; (2) $\{\boldsymbol{w}_p^*\}_p$ orthonormal; (3) σ even;
- (4) For simplicity, assume $IE(\sigma) = 4$.
- If we assume everything is decoupled ...
 - One \mathbf{v}_p for one $a_p \sigma(\mathbf{w}_p^* \cdot \mathbf{x})$ and no interaction between them.
- ightharpoonup \Rightarrow Direction $a_p \sigma(\mathbf{w}_p^* \cdot \mathbf{x})$ gets learned around time

$$\mathcal{T}_p := \left(\eta a_p \left\langle \mathbf{w}_p^*, \bar{\mathbf{v}}_p \right\rangle^2 \right)^{-1}.$$

▶ ⇒ Loss satisfies

$$\mathcal{L}(t) \approx \sum_{p=1}^{P} a_p^2 \mathbb{I}\left\{t < T_p\right\} = \sum_{p=1}^{P} a_p^2 \mathbb{I}\left\{t < \left(\eta a_p \left\langle \boldsymbol{w}_p^*, \bar{\boldsymbol{v}}_p \right\rangle^2\right)^{-1}\right\}.$$

$$\mathcal{L}(t) \approx \sum_{p=1}^{P} a_{p}^{2} \mathbb{1} \left\{ t < T_{p} \right\} = \sum_{p=1}^{P} a_{p}^{2} \mathbb{1} \left\{ t < \left(\eta a_{p} \left\langle \boldsymbol{w}_{p}^{*}, \bar{\boldsymbol{v}}_{p} \right\rangle^{2} \right)^{-1} \right\}.$$

Assumption (power law signal)

$$a_p = p^{-\beta}$$
 for some constant $\beta > 1/2$.

$$\mathcal{L}(t) \approx \sum_{p=1}^{P} a_{p}^{2} \mathbb{1} \left\{ t < T_{p} \right\} = \sum_{p=1}^{P} a_{p}^{2} \mathbb{1} \left\{ t < \left(\eta a_{p} \left\langle \boldsymbol{w}_{p}^{*}, \boldsymbol{\bar{v}}_{p} \right\rangle^{2} \right)^{-1} \right\}.$$

Assumption (power law signal)

$$\mathcal{L}(T_p) pprox \sum_{q=p}^P a_q^2$$

$$\mathcal{L}(t) \approx \sum_{p=1}^{P} a_{p}^{2} \mathbb{1} \left\{ t < T_{p} \right\} = \sum_{p=1}^{P} a_{p}^{2} \mathbb{1} \left\{ t < \left(\eta a_{p} \left\langle \boldsymbol{w}_{p}^{*}, \bar{\boldsymbol{v}}_{p} \right\rangle^{2} \right)^{-1} \right\}.$$

Assumption (power law signal)

$$\mathcal{L}(T_p) pprox \sum_{q=p}^P a_q^2 = \sum_{q=p}^P q^{-2\beta}$$

$$\mathcal{L}(t) \approx \sum_{p=1}^{P} a_{p}^{2} \mathbb{1} \left\{ t < T_{p} \right\} = \sum_{p=1}^{P} a_{p}^{2} \mathbb{1} \left\{ t < \left(\eta a_{p} \left\langle \boldsymbol{w}_{p}^{*}, \boldsymbol{\bar{v}}_{p} \right\rangle^{2} \right)^{-1} \right\}.$$

Assumption (power law signal)

$$\mathcal{L}(\mathcal{T}_p) pprox \sum_{q=p}^P a_q^2 = \sum_{q=p}^P q^{-2eta} pprox \sum_{q=p}^\infty q^{-2eta}$$

$$\mathcal{L}(t) \approx \sum_{p=1}^{P} a_{p}^{2} \mathbb{1} \left\{ t < T_{p} \right\} = \sum_{p=1}^{P} a_{p}^{2} \mathbb{1} \left\{ t < \left(\eta a_{p} \left\langle \boldsymbol{w}_{p}^{*}, \boldsymbol{\bar{v}}_{p} \right\rangle^{2} \right)^{-1} \right\}.$$

Assumption (power law signal)

$$\mathcal{L}(T_p) \approx \sum_{q=p}^P a_q^2 = \sum_{q=p}^P q^{-2\beta} \approx \sum_{q=p}^\infty q^{-2\beta} \approx \int_p^\infty s^{-2\beta} \, \mathrm{d}s = \frac{p^{1-2b}}{2b-1}.$$

$$\mathcal{L}(t) \approx \sum_{p=1}^{P} a_{p}^{2} \mathbb{1} \left\{ t < T_{p} \right\} = \sum_{p=1}^{P} a_{p}^{2} \mathbb{1} \left\{ t < \left(\eta a_{p} \left\langle \boldsymbol{w}_{p}^{*}, \bar{\boldsymbol{v}}_{p} \right\rangle^{2} \right)^{-1} \right\}.$$

Assumption (power law signal)

 $a_p = p^{-\beta}$ for some constant $\beta > 1/2$.

$$\mathcal{L}(T_p) \approx \sum_{q=p}^P a_q^2 = \sum_{q=p}^P q^{-2\beta} \approx \sum_{q=p}^\infty q^{-2\beta} \approx \int_p^\infty s^{-2\beta} \, \mathrm{d}s = \frac{p^{1-2b}}{2b-1}.$$

Formal change-of-variables:

$$T_{p} = \left(\eta p^{-\beta} \left\langle \mathbf{w}_{p}^{*}, \bar{\mathbf{v}}_{p} \right\rangle^{2}\right)^{-1} = t \quad \Leftrightarrow \quad p = \left(\eta t \left\langle \mathbf{w}_{p}^{*}, \bar{\mathbf{v}}_{p} \right\rangle^{2}\right)^{1/\beta} \approx (\eta t/d)^{1/\beta}$$

$$\mathcal{L}(t) pprox \sum_{p=1}^{P} a_p^2 \mathbb{I}\left\{t < \mathcal{T}_p
ight\} = \sum_{p=1}^{P} a_p^2 \mathbb{I}\left\{t < \left(\eta a_p \left\langle oldsymbol{w}_p^*, ar{oldsymbol{v}}_p
ight
angle^2
ight)^{-1}
ight\}.$$

Assumption (power law signal)

 $a_p = p^{-\beta}$ for some constant $\beta > 1/2$.

$$\mathcal{L}(\mathcal{T}_p) \approx \sum_{q=p}^P a_q^2 = \sum_{q=p}^P q^{-2\beta} \approx \sum_{q=p}^\infty q^{-2\beta} \approx \int_p^\infty s^{-2\beta} \, \mathrm{d}s = \frac{p^{1-2b}}{2b-1}.$$

Formal change-of-variables:

$$egin{aligned} T_{p} &= \left(\eta p^{-eta} \left\langle oldsymbol{w}_{p}^{*}, ar{oldsymbol{v}}_{p}
ight
angle^{2}
ight)^{-1} = t \quad \Leftrightarrow \quad p = \left(\eta t \left\langle oldsymbol{w}_{p}^{*}, ar{oldsymbol{v}}_{p}
ight)^{2}
ight)^{1/eta} pprox \left(\eta t/d
ight)^{1/eta} \ \ &\Rightarrow \quad \mathcal{L}(t) pprox rac{1}{2b-1} \left(\eta t/d
ight)^{(1-2eta)/eta} \end{aligned}$$

From the idealized to the actual dynamics

- Issue of the existing analyses.
 - Larger directions may attract too many neurons.
 - ▶ Need e^{κ} neurons to cover all directions.

From the idealized to the actual dynamics

- Issue of the existing analyses.
 - Larger directions may attract too many neurons.
 - ightharpoonup Need e^{κ} neurons to cover all directions.

Claim 1. If all irrelevant coordinates $\bar{v}_{k,p}^2$ are $\tilde{O}(1/d)$, then the dynamics can be decoupled. (incoherence \Rightarrow decoupled dynamics)

Claim 2. Sharp transitions \Rightarrow small irrelevant coordinates.

- ▶ At first, most neurons get attracted by direction $a_1 \mathbf{w}_1^*$.
 - ► (Decoupled dynamics ⇒ partial progress can be preserved.)

- ▶ Sharp transitions $\Rightarrow \bar{v}_{3,1}^2 = \tilde{O}(1/d)$ until $t \approx T_{\text{critical}}$.
- $ightharpoonup v_1$ fits $a_1 w_1^*$ around time $T_1 < T_{\text{critical}}$ and kills the signal.
- $ightharpoonup \Rightarrow \bar{v}_{3.1}^2$ stays small throughout training.

▶ The remaining neurons get attracted by $a_2 \mathbf{w}_2^*$.

- \triangleright \mathbf{v}_2 fits $a_2\mathbf{w}_2^*$.
- ► The other neurons stay close to the initialization (and preserve the partial progress).

- ► Teacher network: $f_*(\mathbf{x}) = \sum_{p=1}^P a_p \sigma(\mathbf{w}_p^* \cdot \mathbf{x})$, where $P \ll d^c$, $\{\mathbf{w}_p^*\}_p$ orthonormal, σ even and $J := \mathrm{IE}(\sigma) \geq 4$.
- ► Student network: $f(\mathbf{x}) = \sum_{k=1}^{m} \|\mathbf{v}_k\|^2 \sigma(\bar{\mathbf{v}}_k \cdot \mathbf{x})$ with $m = O(P \log P)$.
- Algorithm: online SGD with step size $\eta = 1/(d^{J/2} \operatorname{poly}(P, \kappa))$.
- ▶ Conclusion: there exists an injective $\iota : [P] \to [m]$ such that:
 - (a) Unused neurons. $\|\mathbf{v}_k\|$ is small if $k \notin \iota([P])$.
 - (b) Emergence. $\forall p \in [P]$, $v_{\iota(p)}$ converges to and fits $a_p w_p^*$ at time $(1 \pm o(1)) T_p$, where $T_p := 1/(8\eta a_p \langle \bar{v}_{\iota(p)}, w_p^* \rangle^{J-1}$

- ► Teacher network: $f_*(\mathbf{x}) = \sum_{p=1}^P a_p \sigma(\mathbf{w}_p^* \cdot \mathbf{x})$, where $P \ll d^c$, $\{\mathbf{w}_p^*\}_p$ orthonormal, σ even and $J := \mathrm{IE}(\sigma) \geq 4$.
- ► Student network: $f(\mathbf{x}) = \sum_{k=1}^{m} \|\mathbf{v}_k\|^2 \sigma(\bar{\mathbf{v}}_k \cdot \mathbf{x})$ with $m = O(P \log P)$.
- Algorithm: online SGD with step size $\eta = 1/(d^{J/2} \operatorname{poly}(P, \kappa))$
- ▶ Conclusion: there exists an injective $\iota : [P] \to [m]$ such that:
 - (a) Unused neurons. $\|\mathbf{v}_k\|$ is small if $k \notin \iota([P])$.
 - (b) Emergence. $\forall p \in [P], v_{\iota(p)}$ converges to and fits $a_p w_p^*$
 - at time $(1 \pm o(1)) T_p$, where $T_p := 1/(8\eta a_p \langle \bar{\mathbf{v}}_{\iota(p)}, \mathbf{w}_p^* \rangle^{J-2}$

- ► Teacher network: $f_*(\mathbf{x}) = \sum_{p=1}^P a_p \sigma(\mathbf{w}_p^* \cdot \mathbf{x})$, where $P \ll d^c$, $\{\mathbf{w}_p^*\}_p$ orthonormal, σ even and $J := \mathrm{IE}(\sigma) \geq 4$.
- ► Student network: $f(\mathbf{x}) = \sum_{k=1}^{m} \|\mathbf{v}_k\|^2 \sigma(\bar{\mathbf{v}}_k \cdot \mathbf{x})$ with $m = O(P \log P)$.
- ▶ Algorithm: online SGD with step size $\eta = 1/(d^{J/2} \operatorname{poly}(P, \kappa))$.
- **▶** Conclusion: there exists an injective $\iota : [P] \to [m]$ such that:
 - (b) **Emergence**. $\forall p \in [P], v_{\iota(p)}$ converges to and fits $a_p w_p^*$
 - at time $(1 \pm o(1)) I_p$, where $I_p := 1/(8\eta a_p \langle \mathbf{v}_{\iota(p)}, \mathbf{w}_p^* \rangle$

- ► Teacher network: $f_*(\mathbf{x}) = \sum_{p=1}^P a_p \sigma(\mathbf{w}_p^* \cdot \mathbf{x})$, where $P \ll d^c$, $\{\mathbf{w}_p^*\}_p$ orthonormal, σ even and $J := \mathrm{IE}(\sigma) \geq 4$.
- ► Student network: $f(\mathbf{x}) = \sum_{k=1}^{m} \|\mathbf{v}_k\|^2 \sigma(\bar{\mathbf{v}}_k \cdot \mathbf{x})$ with $m = O(P \log P)$.
- ▶ Algorithm: online SGD with step size $\eta = 1/(d^{J/2} \operatorname{poly}(P, \kappa))$.
- ▶ Conclusion: there exists an injective $\iota : [P] \to [m]$ such that:
 - (a) Unused neurons. $\|\mathbf{v}_k\|$ is small if $k \notin \iota([P])$.
 - (b) Emergence. $\forall p \in [P]$, $\mathbf{v}_{\iota(p)}$ converges to and fits $a_p \mathbf{w}_p^*$ at time $(1 \pm o(1)) T_p$, where $T_p := 1/(8\eta a_p \langle \bar{\mathbf{v}}_{\iota(p)}, \mathbf{w}_p^* \rangle^{J-2})$.

- ► Teacher network: $f_*(\mathbf{x}) = \sum_{p=1}^P a_p \sigma(\mathbf{w}_p^* \cdot \mathbf{x})$, where $P \ll d^c$, $\{\mathbf{w}_p^*\}_p$ orthonormal, σ even and $J := \mathrm{IE}(\sigma) \geq 4$.
- ► Student network: $f(\mathbf{x}) = \sum_{k=1}^{m} \|\mathbf{v}_k\|^2 \sigma(\bar{\mathbf{v}}_k \cdot \mathbf{x})$ with $m = O(P \log P)$.
- ▶ Algorithm: online SGD with step size $\eta = 1/(d^{J/2} \operatorname{poly}(P, \kappa))$.
- **Conclusion:** there exists an injective $\iota : [P] \to [m]$ such that:
 - (a) **Unused neurons.** $\|\mathbf{v}_k\|$ is small if $k \notin \iota([P])$.
 - (b) Emergence. $\forall p \in [P]$, $\mathbf{v}_{\iota(p)}$ converges to and fits $a_p \mathbf{w}_p^*$ at time $(1 \pm o(1)) T_p$, where $T_p := 1/(8\eta a_p \langle \bar{\mathbf{v}}_{\iota(p)}, \mathbf{w}_p^* \rangle^{J-2})$.

Theorem (Optimization)

- ► Teacher network: $f_*(\mathbf{x}) = \sum_{p=1}^P a_p \sigma(\mathbf{w}_p^* \cdot \mathbf{x})$, where $P \ll d^c$, $\{\mathbf{w}_p^*\}_p$ orthonormal, σ even and $J := \mathrm{IE}(\sigma) \geq 4$.
- ► Student network: $f(\mathbf{x}) = \sum_{k=1}^{m} \|\mathbf{v}_k\|^2 \sigma(\bar{\mathbf{v}}_k \cdot \mathbf{x})$ with $m = O(P \log P)$.
- ▶ Algorithm: online SGD with step size $\eta = 1/(d^{J/2} \operatorname{poly}(P, \kappa))$.
- ▶ Conclusion: there exists an injective $\iota : [P] \to [m]$ such that:
 - (a) Unused neurons. $\|\mathbf{v}_k\|$ is small if $k \notin \iota([P])$.
 - (b) **Emergence.** $\forall p \in [P]$, $\mathbf{v}_{\iota(p)}$ converges to and fits $a_p \mathbf{w}_p^*$ at time $(1 \pm o(1)) T_p$, where $T_p := 1/(8\eta a_p \langle \bar{\mathbf{v}}_{\iota(p)}, \mathbf{w}_p^* \rangle^{J-2})$.

Corollary (Scaling laws)

 $a_p \propto p^{-\beta}$ for $\beta > 1/2$. Width-m learner (maybe under-parameterized). Online SGD with step size η and t iterations/samples.

$$\mathcal{L}(m,t) \sim m^{1-2\beta} \vee \left(\eta t d^{1-J/2}\right)^{\frac{1-2\beta}{\beta}}$$

Takeaway

- ► The additive model hypothesis is true at least for orthogonal two-layer networks.
- ► Learning different directions/features with vastly different signal strength without deflation/reinitialization is possible.
- ► Sharp transitions help preserve the randomness from the initialization and prevent model collapse.

- ► Higher-order terms \Rightarrow sharp transitions.
- Examples of sharp transitions.
 - $\mathcal{L}(w) = (w_* w)^2$, $\mathcal{L}(w) = (w_* w^2)^2$. X
 - $\mathcal{L}(\mathbf{w}) = (w_* w_1 w_2 w_3)^2$, $\mathcal{L}(\mathbf{w}) = (w_* w^k)^2$, $k \ge 3$.
- Q. Do deep architectures always lead to sharp transitions?
- ▶ Q. Do sharp transitions help training/feature learning in practice?

Takeaway

- ► The additive model hypothesis is true at least for orthogonal two-layer networks.
- ► Learning different directions/features with vastly different signal strength without deflation/reinitialization is possible.
- ► Sharp transitions help preserve the randomness from the initialization and prevent model collapse.

- ► Higher-order terms \Rightarrow sharp transitions.
- Examples of sharp transitions.
 - $\mathcal{L}(w) = (w_* w)^2$, $\mathcal{L}(w) = (w_* w^2)^2$. X
 - $\mathcal{L}(\mathbf{w}) = (w_* w_1 w_2 w_3)^2, \ \mathcal{L}(\mathbf{w}) = (w_* w^k)^2, \ k \ge 3. \ \sqrt{2}$
- Q. Do deep architectures always lead to sharp transitions?
- ▶ Q. Do sharp transitions help training/feature learning in practice?

Takeaway

- ► The additive model hypothesis is true at least for orthogonal two-layer networks.
- ► Learning different directions/features with vastly different signal strength without deflation/reinitialization is possible.
- Sharp transitions help preserve the randomness from the initialization and prevent model collapse.

- ► Higher-order terms \Rightarrow sharp transitions.
- Examples of sharp transitions.
 - $\mathcal{L}(w) = (w_* w)^2$, $\mathcal{L}(w) = (w_* w^2)^2$. X
 - $\mathcal{L}(\mathbf{w}) = (w_* w_1 w_2 w_3)^2$, $\mathcal{L}(w) = (w_* w^k)^2$, $k \ge 3$.
- Q. Do deep architectures always lead to sharp transitions?
- ▶ Q. Do sharp transitions help training/feature learning in practice?

Takeaway

- ► The additive model hypothesis is true at least for orthogonal two-layer networks.
- ► Learning different directions/features with vastly different signal strength without deflation/reinitialization is possible.
- Sharp transitions help preserve the randomness from the initialization and prevent model collapse.

- ► Higher-order terms ⇒ sharp transitions.
- Examples of sharp transitions.
 - $\mathcal{L}(w) = (w_* w)^2$, $\mathcal{L}(w) = (w_* w^2)^2$. X
 - $\mathcal{L}(\mathbf{w}) = (w_* w_1 w_2 w_3)^2, \ \mathcal{L}(\mathbf{w}) = (w_* w^k)^2, k \ge 3. \ \sqrt{2}$
- Q. Do deep architectures always lead to sharp transitions?
- ▶ Q. Do sharp transitions help training/feature learning in practice?

Takeaway

- ► The additive model hypothesis is true at least for orthogonal two-layer networks.
- ► Learning different directions/features with vastly different signal strength without deflation/reinitialization is possible.
- ► Sharp transitions help preserve the randomness from the initialization and prevent model collapse.

- ▶ Higher-order terms \Rightarrow sharp transitions.
- Examples of sharp transitions.
 - $\mathcal{L}(w) = (w_* w)^2$, $\mathcal{L}(w) = (w_* w^2)^2$. X
 - $\mathcal{L}(\mathbf{w}) = (w_* w_1 w_2 w_3)^2$, $\mathcal{L}(w) = (w_* w^k)^2$, $k \ge 3$.
- ▶ **Q.** Do deep architectures always lead to sharp transitions?
- ▶ Q. Do sharp transitions help training/feature learning in practice?

Takeaway

- ► The additive model hypothesis is true at least for orthogonal two-layer networks.
- ► Learning different directions/features with vastly different signal strength without deflation/reinitialization is possible.
- Sharp transitions help preserve the randomness from the initialization and prevent model collapse.

- ▶ Higher-order terms \Rightarrow sharp transitions.
- Examples of sharp transitions.
 - $\mathcal{L}(w) = (w_* w)^2$, $\mathcal{L}(w) = (w_* w^2)^2$. X
 - $\mathcal{L}(\mathbf{w}) = (w_* w_1 w_2 w_3)^2$, $\mathcal{L}(w) = (w_* w^k)^2$, $k \ge 3$.
- Q. Do deep architectures always lead to sharp transitions?
- ▶ Q. Do sharp transitions help training/feature learning in practice?